Don't Take Grants for Granted

Leveraging the Most from Congressional Funding Opportunities for the Life-Cycle Overhaul of an Inventory of Municipally Operated Dams

James Grimes, PE Brandon Harris, PE

Presentation Outline

- What is ARPA?
- Dams Program at Gwinnett County
- Project Scoping Process
- Resulting Scope/Project Delivery
- Status of ARPA Funded Projects
- Lessons Learned

What is ARPA?

American Rescue Plan Act

- What is it?
 - Congressional allocation from H.R.1319 - American Rescue Plan Act of 2021 117th Congress
 - Coronavirus State and Local Fiscal Recovery Funds
 - 181.9M awarded county-wide to Gwinnett
 - 10M utilized for dam infrastructure

What is ARPA?

American Rescue Plan Act

Use it or Lose It!

- Stipulations from the Federal Government for use of Funds
- Must be allocated/encumbered under contract by December 2024
- All funds spent/done with construction by December 2026
- We hit the ground running 2022 –
 2023 sourcing projects

Program Overview

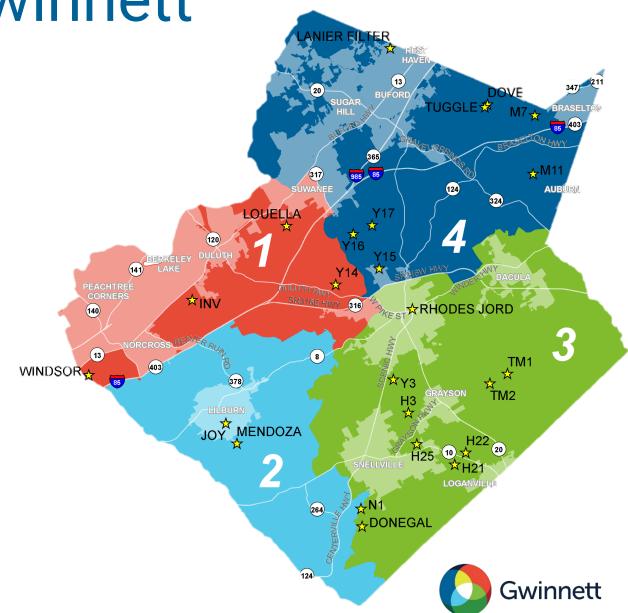
Program Goals

- Ensure compliance with GA DNR/EPD Safe Dams Program guidelines and regulations
- Maintain safe operating conditions at all Gwinnett maintained dam sites
- Safeguard public lives and infrastructure from flood damage
- Technical resource to citizens and Gwinnett Office of Emergency Management

Approach to Projects

Projects identified through a continuous monitoring, regulatory inspection program, and life-cycle condition assessments.

- Improvement projects proactively correct any deficiencies in conditions of dams, in areas of personnel and public safety
- Dam Rehabilitation: replacement of major components in response to watershed changes or dam reclassification by regulatory agencies requiring spillway capacity upgrades, embankment overhauls etc.
- Dam Maintenance: aimed at extending service-life of dam components, providing safe operating conditions/access during inspections or emergency conditions, and returning dam to intended design state
- Dam Removal/Decommission: removal of structure if dictated by engineering, fiscal, or safety concerns


Inventory of Structures

Major Dams in Inventory (24)

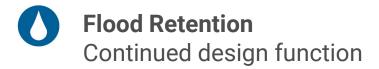
- · 16 High Hazard Dams
- 3 Low Hazard Dams
- 5 Exempt Monitored Impounding Structures

Cyclical Program Mandates

- · Quarterly Dam Inspection of each site
- Annual Reporting to GA EDP/DNR Safe Dams
- Emergency Preparedness Exercises
- Breach modelling and mapping

Inventory of Structures

Inventory of Structures



Project Scoping Process

Beginning with Project Drivers

Extend Service-Life
50-yr intended design life of NRCS dams
Presently year 57+ for dams installed as
early as 1967. Issues can be addressed
by projects to extend service-life by
another 20-yrs

Public Health and Safety
Well maintained high hazard structure
limits risks to public and infrastructure
downstream

With state and federal agencies as an operator and facility co-sponsor

Project Scoping Process
Determining Spheres of Influence

Influence per Dam Characteristics

40 ft Height

Drainage Area 1,990 Acres

Storage Volume Behind

Dam

1485 Acre-feet

Utility Infrastructure at Risk in Breach Zone

Water Pressurized Main 2.71 miles of pipe in breach

Stormwater Closed

Conduit

3.07 miles of pipe

2.16 miles of pipe Sewer

Roadway 4.16 miles of roadway

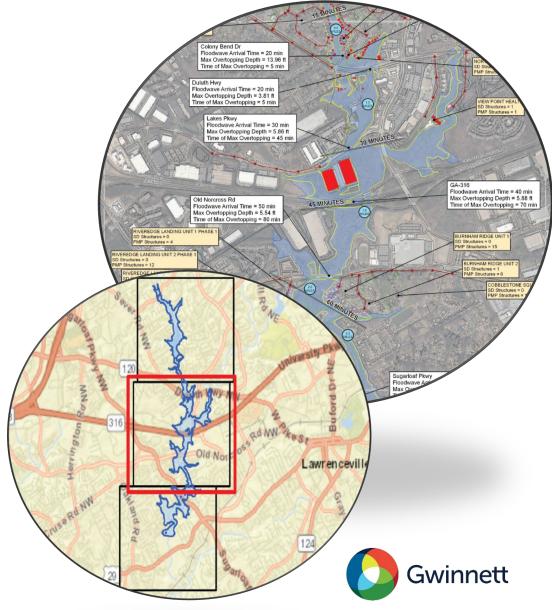
Critical Infrastructure in Breach Area

Hospitals 0 Known Schools 0 Known Police/Fire Station 0 Known

Population at Risks in Breach Zone (Category-1/High Hazard)

Parcels 616 affected

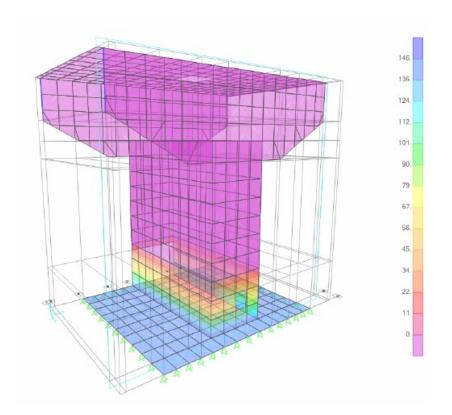
49 Community/Development **Development Areas**


areas affected

Houses 60 at risk

Hospitals

Schools

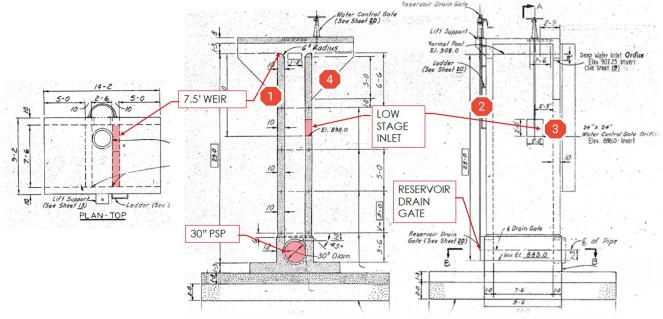

Parks 1 in breach zone

Project Scoping Process

Continuing with Existing Conditions Assessment and Asset Evaluation


- Mining existing as-builts and Record Documents for intended design state
- Mining quarterly visual inspections for Persistent Maintenance Issues requiring heavy construction or heavy landscaping
- Detailed Visual Inspections (VIR) of dam embankments and outer facets by GA Safe Dams Engineer-of-Record
- Structural Concrete Condition Assessments
 - Underwater Diving Inspections of risers/outlet control structures
 - PACP CCTV Analysis of Principal Spillway Conduits through dams
- Mechanical Condition Assessment of low-level gates, valve casings, and stems

Existing Conditions & Assessment



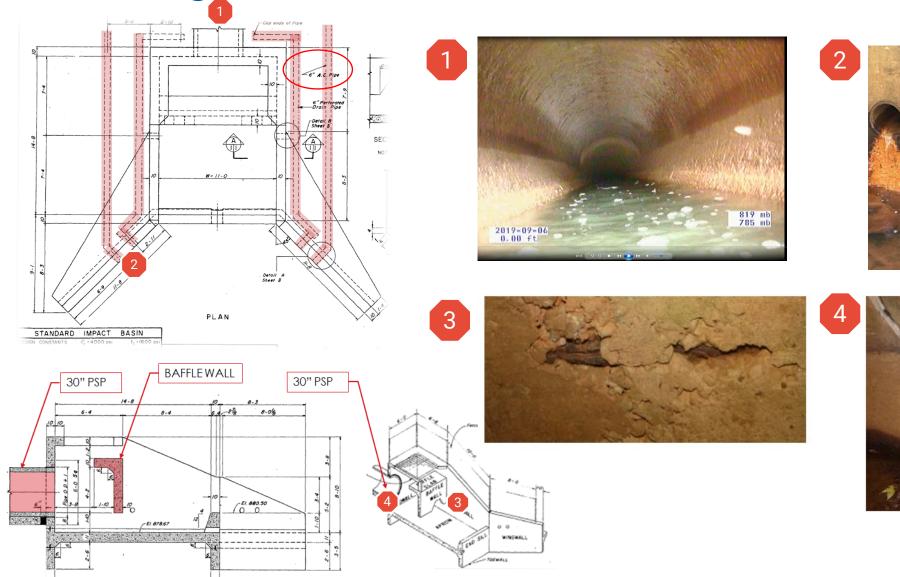


Existing Conditions & Assessment

Horizontal angle-iron anchored to the concrete via J-Bolts. Angle-iron and J-Bolt both showing evidence of heavy corrosion.

Stainless steel valve stem coupler showing 1 of 4 attachment pins.

Corrugated steel likely used as cover/trash barrier for overflow opening. Showing extreme corrosion and section loss.



Wild life gate guides showing heavy corrosion. Guide off set anchors also showing heavy corrosion.

3

1

Existing Conditions & Assessment

Condition Matrixing

Dam ID	Gate(s)	Low-Stage Trash Rack	High-Stage Trash Racks	OCS Structure	PSP Outlet	PSP Interior	Safety1	Notes
Phase 1	Inspec	tions						
M-7 ²	Р	LL gate is leaking; WL gate is inoperable but is not emergency since LL gate is operable.						
H-21	Р	N/A	Р	P/FO	F	F	5	Gate is intact but has heavy corrosion. OCS has high submergence and high "clog-ability".
H-22	Р	Р	S/F	Р	F	F/P	U	Successful rehabilitation of gate is not likely.
TM-1	S/F	Р	Р	F/P	F	F	U	Cracks and exposed reinforcement in slab. Wildlife gate is in satisfactory condition.
TM-2	F/P	Р	Р	Р	Р	Рз	U	Poorly constructed overall. Low-level gate is in fair condition
Y-14	Р	Р	S/F	F/P	F	F/P ³	U	Gate stem bent. Gate has heavy corrosion.
Y-15	Р	N/A	Р	P/FO	F	P ₃	U	Longitudinal cracks in PSP. OCS has high submergence and high "clog-ability".
Phase	2 Inspe	ctions						
M-11 ²	Р	N/A	F	F	F	F/P	U	Interior inspection was postponed due to high water.
H-3	Р	F	F	Р	S/F	Р	U	Low-stage trash rack was replaced.
H-25	Р	Р	F	Р	F	F/P	U	Gate was sealed but had more corrosion than most.
N-1	Р	Р	S/F	Р	Р	F	٥	Leaking gate.
Invemess	s	N/A	F/P	F/P	F	F	s	Most of OCS was fair but the joints were poor.
Y-3	Р	Р	F/P	Р	F/P	Р	٥	Leaking gate. High-stage trash rack members were fair, but the hardware was poor.
Y-16	F	F/P	F	Р	Р	F/P ³	U	Gate replacement is recommended, but the gate was in better condition than most.

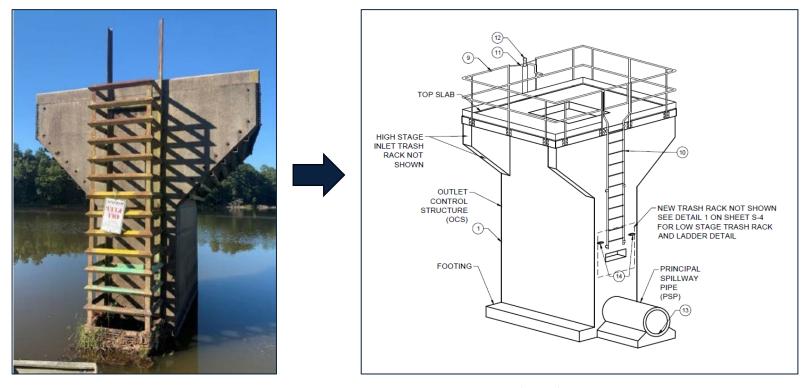
Scope Recommendations Common to all Site

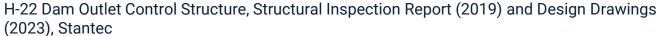
F	Riser	Impact/Stilling Basin(s)	Embankment	Spillway
C	Full in-kind replacement or Upgrades of riser structure (OCS) Updated wildlife gate, corrosions resistant trash rack Access and Safety Improvement (ex: access ladder and safety railings)	 baffle block Replace top slab extension concrete point-repairs and riprap replenishment Replace animal guards 	 Slope Refurbishment Create buffer zone between toe of dam and encroaching tree line per maintenance standards 	Lining Principal Spillway Pipe (PSP)
	Reduce likelihood of platform and valve inundation Addition of public caution signage	 Replenish Riprap Apron 		

Project Delivery

Project Scope

Remove unwanted vegetation from dam limits

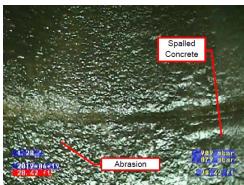

Y-15 Dam, pre and post removal of unwanted vegetation (2023)

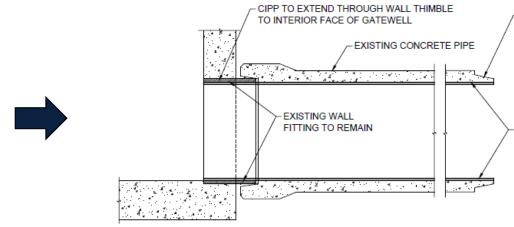


Project Delivery

Project Scope

Replace or repair outlet control structures





Project Delivery Project Scope

Line principal spillway pipes (Cast in Place Pipe lining)

- CLEAN RUST FROM STEEL BAND AT OUTLET END OF PSP AND RE-COAT WITH A RUST PROTECTIVE COATING AS SPECIFIED IN THE GENERAL STRUCTURAL NOTES.

SEAL CRACKS IN CONCRETE AT OUTLET END OF PSP PER DETAIL 5 ON THIS SHEET. PATCH SPALLS IN CONCRETE PER DETAIL 4 ON THIS SHEET. CLEAN AND APPLY AN ABRASION RESISTANT COATING, AS SPECIFIED IN THE GENERAL STRUCTURAL NOTES, TO THE EXPOSED EXTERIOR CONCRETE AT OUTLET OF PSP.

INSTALL NEW 16.5mm CURED IN PLACE PIPE (CIPP) LINER PER SPECIFICATIONS

S3 PIPE LINER DETAIL
S3 SCALE: 3/4"=1'-0"

Project Scoping Process

Short-listing and contingency planning

Ranking Based On Condition Matrix

2	N-1	Replace Gate, Repair Structure, Add Remote Actuator
	TM-1	Replace Gate, Repair Structure
	Y-3	Replace Gate, Repair Structure, Add Platform, Line PSP
	Y-14	Replace Gate, Repair Structure, Add Platform, Line PSP
	Y-16	Replace Gate, Repair Structure, Line PSP
3	M-11	Replace Gate, Repair Structure, Add Remote Actuator, Line PSP
	H-21	Replace Structure
4	TM-2	Replace Structure, Line PSP, Replace PSP Impact Basin
	Y-15	Replace Structure, Line PSP
	Y-17	Replace Structure, Line PSP

Ranking Based on Level-of-Effort & Costs

1	H-21	Replace Structure
2	Y-15	Replace Structure; Line PSP
3	TM-2	Replace Structure; Line PSP; Replace PSP Impact Basin
4	Y-17	Replace Structure; Line PSP
5	M-11	Replace Structure, or Replace Gate, Add Remote Actuator, and Repair Structure; Line PSP
6	H-22	Replace Gate, Repair Structure; Add Platform; Line PSP
7	Y-14	Replace Gate; Repair Structure; Add Platform; Line PSP
8	N-1	Replace Gate; Repair Structure; Add Remote Actuator
9	Y-3	Replace Gate; Repair Structure; Add Platform; Line PSP
10	M-7	Replace Gates; Repair Structure; Add Platform

Ranking Based on Compliance & Risk Drivers

ENVIRONMENTAL PROTECTION DIVISION

Order	Site	Critical Task(s)
1	H-21	In-operable Gate Valve
2	H-22	In-operable Gate Valve
3	Y-15	In-operable Gate Valve
4	Y-14	Dysfunctional Gate Valve

Project Delivery Project Development Timeline

Detailed Engineering and Design
(1-2 years)

Permitting
(3 months - 1 year)

Bid Package
(3-6 months)

Advertisement
(2 months)

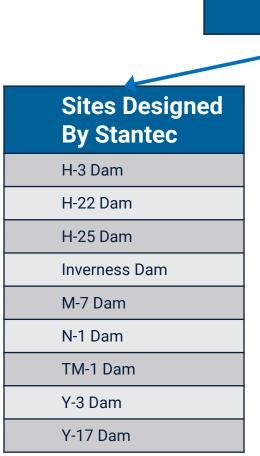
Contract Award
(3 months)

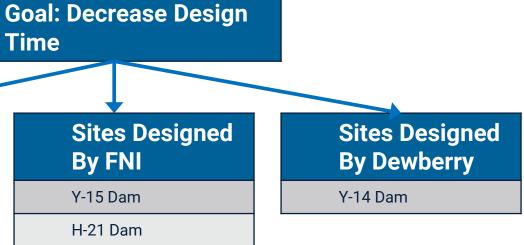
Total timeframe between 1 – 3.5 years from finalization of scoping until award of contract

Challenge meeting fund allocation deadline

Project Delivery Project Development Timeline

Crashing schedule as much possible to meet ARPA deadlines


- Portions of project delivery timeline that could be shortened
 - Detailed Design (w/ buy-in from Engineer)
 - Weigh risks of accelerated design schedule
 - Specifications & Bid Package Development
 - Perform during detailed design
- Aspects out of direct control
 - Permitting
 - Regulatory entities approval and coordination (NRCS, GA DNR/Safe Dams)
 - Land acquisition and easements
 - Project advertisement and contract administrative timelines



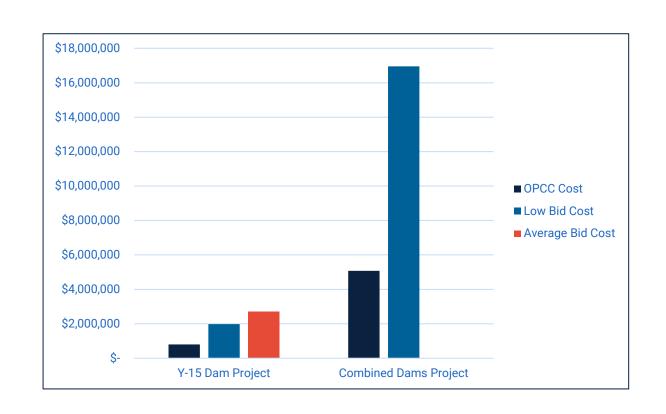
Project Delivery

Initial Project Development Strategies

Project Delivery

Initial ARPA Projects (2021 Assumptions)

Project	Initial Engineer's Estimate
Y-15 Dam Outlet Control Structure Replacement	~\$800 K
Combined Dams Outlet Control Structure Maintenance	~5.0 M
TM-2 Dam Outlet Control Structure Replacement	~\$1.0 M
Rhodes Jordan Dam Siphon Construction	~400 K



Project Delivery Initial Price Feedback

Y-15 Project Bids: May 2023

Combined Dams Project Bids: August 2023

- Large cost increases observed from data utilized in cost estimate preparation (pre COVID era costs)
- Only 1 Bid received Combined Dams

Project Delivery

Bid Comparison

Bid Item	Initial Estimate Unit Price	Average Bid Unit Price
Full Lake Lowering/Dewatering	~\$100 K (lump sum)	~\$500 K (lump sum)
Partial Lake Lowering/Dewatering	~\$5 K (lump sum)	~\$130 K (lump sum)
Mobilization	~\$40 K (per site)	~\$160 K (per site)
CIPP Lining	~\$300 (linear foot)	~\$1000 (linear foot)

Price increases observed across the board

Observed prices from projects
 ~3 years ago outdated

Project Delivery Direct Feedback

Feedback from Combined Dams Project

Contractor Schedule Constraints

Perceived risk in water control portion of projects

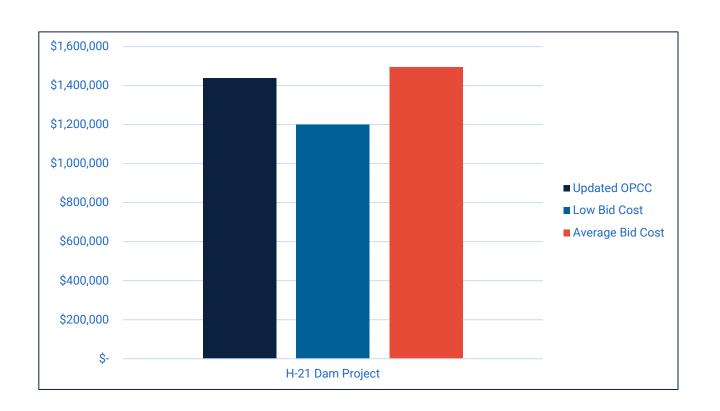
Request for greater breakdown of project costs

Project Delivery Update

Break project portfolio into smaller groups

Ease project schedule constraints

Revise bid schedule strategies



Revised OPCC Comparison

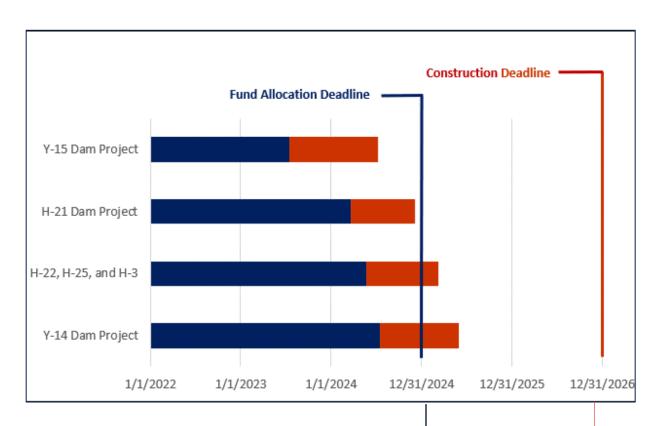
H-21 Project Bids: January 2024

- Slightly better price
- Increased bid response

Revised ARPA Projects (Current Plan)

Project	Current Contract/Estimate
Y-15 Dam Outlet Control Structure Replacement	Finalized contract \$2.0 M
H-21 Dam Outlet Control Structure Maintenance	Finalized contract \$1.2 M
H-3, H-22, and H-25 Dams Outlet Control Structure Maintenance	Contract to be finalized July 2024
Y-14 Dam Spillway Maintenance	Currently Out for Bid

Construction Schedules


Individual project timeframes under 1 year

Understand potential for material procurement delays

	September 2023 October 2023				r 2023		Nove	ember 2	023		Decembe	er 2023		January 2024 February 2024							March 2024					2024		May 2024				June 2024		
7	03 10	17 2	24 01	08	15 22	29	05	12	19	26 03	10	17 24	31	07 14	21 2	28 04	11	18 2	25	œ	10	17	24	31	07	14 2	1 28	05 1	12 19	26	02 0		16 23	
•	♦ NTP																											General Cond		ne			Yellow F	
	F	Erosion Cont Cleari	ng (subc				Gm	utina / E	Rip Rap \	Mode																						KC-	Heavy	
						 	Gla	ung / F	ар кар ч	- J	Hydrology	y and Temp	Bern Cal	gibtims		ļ																		
													♦ Re	ceive PCCP)					Haul in		Ļ	Build B	em / E Demo (Structur	e / Pipe Base fo	r New S	tructure	,	RC - Fla			n and R Existin	
																		<u>†</u> .	Slick	e Gate	Delivery			[Stru Po	icture - S ur Slab Replace F	iab Pipe Sec	tion ucture - Wall	s					
			- 1							- 1																								
																											7	Pour Walls Clean / C	CIPP Drain Structure Pour To	- Тор		tor)		

Project Schedules

Gwinnett County DWR on track to utilize full amount of ARPA grant money allocated for dams projects

Conclusions

Lessons learned for successful utilization of grant funds:

- Maintain capability and knowledge base necessary to obtain grant funds
- Know the current needs of your stormwater systems before you are under grant schedule constraints
- Understand the challenges presented by grant utilization criteria
- Be ready to expedite portions of project delivery
- Be flexible with project delivery strategies
- Utilize all available feedback to improve project delivery processes

Thank You!

James Grimes, PE

Gwinnett County - Department of Water Resources Engineer V, Engineering and Construction Stormwater Group

Mr. Grimes is a civil engineering professional with over 13 years experience in the analysis, design, and operation of dams and stormwater systems. He holds a bachelor's degree in civil engineering from Georgia Tech and a master's degree in environmental engineering from the Hamburg Technical University.

Brandon Harris, PE

Gwinnett County - Department of Water Resources
Dams Program Manager - Stormwater Technical Services

Mr. Harris is a civil engineering professional with over 15 years experience in project management, H&H modeling, CFD, statistical data analysis, stormwater infrastructure design, inspection of dams, emergency response, and program management of stormwater municipal assets. He holds a bachelor's degree in Civil & Environmental Engineering from Georgia Tech.

