SESWA Regional Seminar BMP SELECTION CRITERIA

Doug, Beisch - Principal

Stantec

Goals and Objectives

- Design Goals and Objectives
- Multi-Function BMPs
- Innovative Approaches

Background Questions:

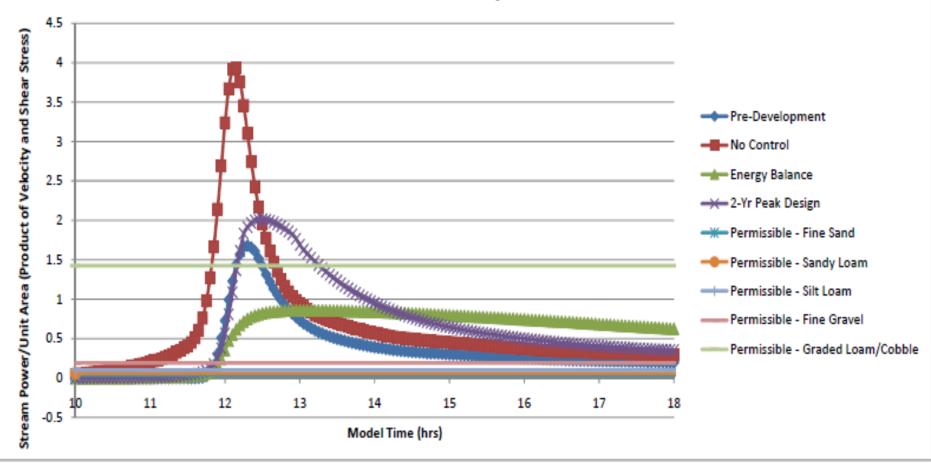
- How many of you are **designers**?
- How many of you review and approve plans?
- How many of you routinely see "LID" approaches incorporated into projects?

BMP Design Goals and Objectives

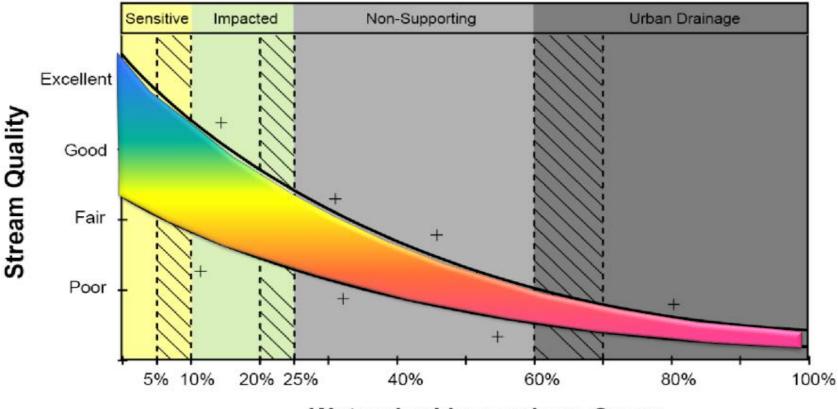
- Site Drainage
- Erosion and Sediment Control
- Runoff Quality Management
- Receiving Channel Protection
- Flood Control

Evolution of Approaches: **Runoff Quality**

Sediment Control


Conventional Ponds

Volume-Focused



Power per Unit Area (lb/ft-sec) vs. Time Medium-Density Scenario

Impervious Cover Model

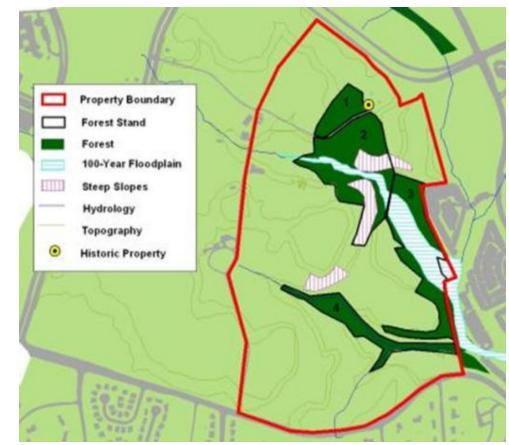
Watershed Impervious Cover

Managed Turf

- Documented impacts from turf management activities:
 - Fertilization;
 - Pest management;

Site Runoff Coefficients (Rv)¹

Cover	HSG A	HSG B	HSG C	HSG D
Forest/Open	0.02	0.03	0.04	0.05
Managed Turf / Disturbed Soil	0.15	0.20	0.22	0.25
Impervious Cover	0.95	0.95	0.95	0.95


¹ Center for Watershed Protection – Technical Memorandum: The Runoff Reduction Method; 4/18/08

Pitt et al (2005), Lichter and Lindsey (1994), Schueler (2001a, 2001b, 1987), Legg et al (1996), Pitt et al (1999), and Cappiella et al (2005)

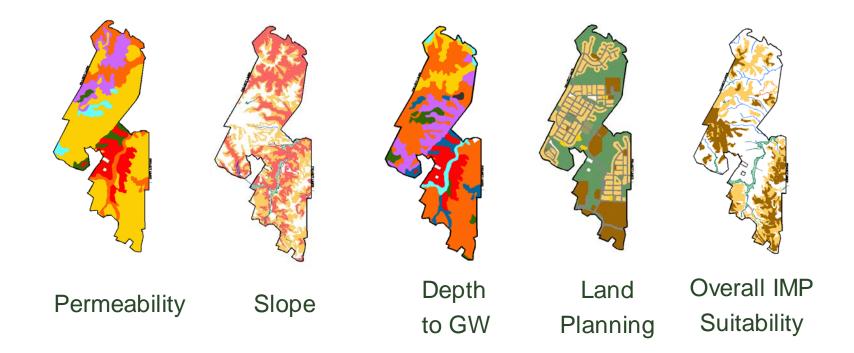
First Step in BMP Selection Environmental Site Inventory & Assessment

- Forest conservation
- Suitable soils
- Steep slopes
- Drainage
- Wetlands
- Zero-order streams
- Buffers
- Sensitive areas
- Limits of disturbance
- Computed nutrient loads & tv

Site and Subdivision Planning

- Resource Assessment
- Conservation/Preservation
- Resource Enhancement and Restoration
- Floodplain Protection
- Maintaining Natural Drainage Patterns
- Disconnecting Impervious Cover

The Starting Point - Resource Assessment


- Aquatic Resources
 - Stream Channel Condition Assessments
 - Geomorphic Channel Stability
 - Hydrologic/Hydraulic Modeling
 - Bioassessment Macroinvertebrates
 - Stream Condition Units (mitigation/impacts)
 - Perenniality Studies
 - Wetland Functional Assessments
- Terrestrial Resources
 - Forest Stand Delineations/Forest Cover Mapping
 - Buffer Assessments
 - Rare Plant Surveys
 - Inventory of existing erosional features

Suitability Screening: New Development

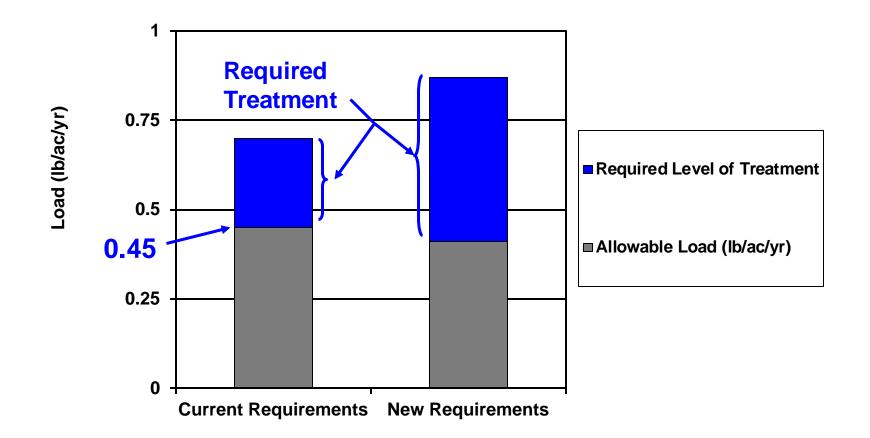
Conservation/Direct Runoff to Natural Areas (Resource Enhancement)

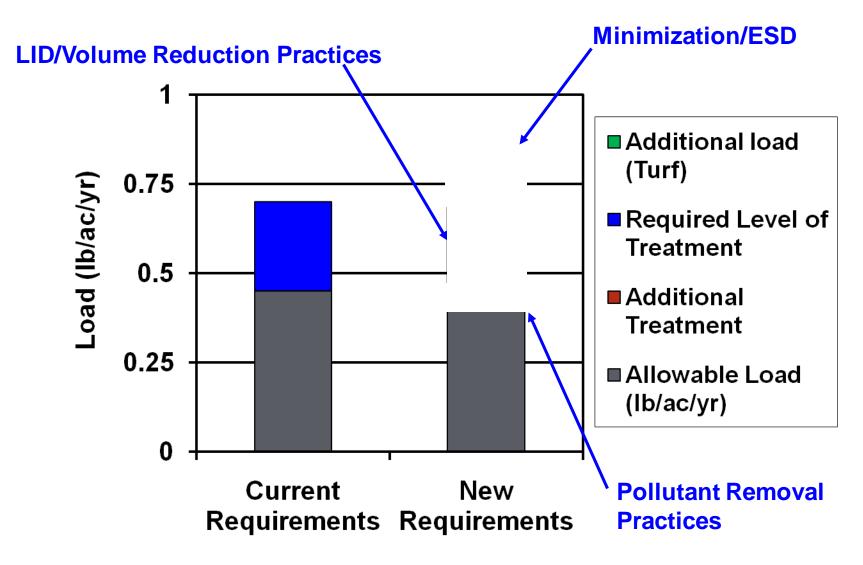
- Opportunities
 - Buffer Enhancement
 - Reforestation/ Afforestation
 - Channel and Wetland restoration/ enhancement

- Soil amendments/restoration
- All have measurable effects of runoff characteristics, erosion, sed. transport

Maintain Natural Drainageways (Floodplain Management & Protection)

Floodplain mapping and protection


- Floodplain Conveyance relief culverts and open bottom crossings
- Floodplain Enhancements reforestation, added flood conveyance, wetland creation, reconnection, removal of obstructions
- Natural Channel design stable sediment transport



Water Quality - Treatment

Treatment Options

Stormwater Practices Differ Sharply in Ability to Reduce Runoff Volume

Wet Ponds, ED Ponds and Constructed Wetlands and Filters Reduce Runoff Volumes by zero to 10%

Bioretention, Infiltration, Dry Swales, Soil Amendments, disconnection, and Related Practices Reduce Runoff Volumes by 50 to 90%

Practice	Design Level	Runoff Reduction	TN EMC Removal ³	TN Mass Load Removal	TP EMC Removal	TP Mass Load Removal ⁶	
Rooftop	1 ²	² 25 to 50 ¹ 0 25 to 50 ¹ 0 25 to 50 ¹					
Disconnect	No Level 2 Design						
Sheet Flow to Veg. Filter	1	50	0	50	0	50	
or <u>Conserv</u> . Open Space	2 ⁵	50 to 75 ¹	0	50 to 75 ¹	0	50 to 75 ¹	
Grass	1	10 to 20 ¹	20	28 to 44 ¹	15	24 to 41 ¹	
Channels			No Leve	el 2 Design			
Soil Compost Amendment	design sp	ised to Decreas becs for Rooftop ed Open Space,	Disconnectio	n, Sheet Flow			
Vegetated	1	45	0	45	0	45	
Roof	2	60	0	60	0	60	
Rainwater	1	Up to 90 ^{3, 5}	0	Up to 90 ^{3, 5}	0	Up to 90 ^{3, 5}	
Harvesting				el 2 Design			
Permeable	1	45	25	59	25	59	
Pavement	2	75	25	81	25	81	
Infiltration	1	50	15	57	25	63	
Practices	2	90	15	92	25	93	
Bioretention	1	40	40	64	25	55	
Practices	2	80	60	90	50	90	
Urban	1	40	40	64	25	55	
Bioretention			No Leve	el 2 Design			
Dry	1	40	25	55	20	52	
Swales	2	60	35	74	40	76	
Wet	1	0	25	25	20	20	
Swales	2	0	35	35	40	40	
Filtering	1	0	30	30	60	60	
Practices	2	0	45	45	65	65	
Constructed	1	0	25	25	50	50	
Wetlands	2	0	55	55	75	75	
Wet	1	0	30 (20) ⁴	30 (20) ⁴	50 (45) ⁴	50 (45) ⁴	
Ponds	2	0	40 (30) ⁴	40 (30) ⁴	75 (65) ⁴	75 (65) ⁴	
Ext. Det.	1	0	10	10	15	15	
Ponds	2	15	10	24	15	31	

Multi-Function Practices

	Site Design	Runoff Reduction	Pollutant Removal
1. Rooftop Disconnection	✓	✓	
2. Filter Strip	✓	✓	
3. Grass Channel		✓	\checkmark
4. Soil Amendments	√*	✓	
5. Green Roof		✓	
6. Rain Tanks & Cisterns		✓	
7. Permeable Pavement		✓	\checkmark
8. Infiltration		✓	\checkmark
9. Bioretention		✓	\checkmark
10. Dry Swales		✓	\checkmark
12. Filtering Practices			\checkmark
13. Constructed Wetlands			\checkmark
14. Wet Ponds			\checkmark
15. ED Ponds		\checkmark	✓

Tools in the Toolbox

- 1. Impervious Disconnection
- 2. Sheetflow to Conservation Area/Filter Strip
- 3. Grass Channels
- 4. Soils Compost Amendments
- 5. Vegetated Roofs
- 6. Rainwater Harvesting
- 7. Permeable Pavement

- 8. Infiltration
- 9. Bioretention (including Urban Bioretention)
- 10. Dry Swales
- 11. Wet Swales
- 12. Filtering Practices
- 13. Constructed Wetlands
- 14. Wet Ponds
- 15. Dry Extended Detention Ponds

Rooftop/Impervious Area Disconnection

Simple Disconnection Rainwater Harvesting & Cisterns; Micro-Infiltration (dry wells); Rain Gardens Urban Planter

Sheet Flow to a Vegetated Filter Strip or Conserved Open Space

Filter Strip & Open Space Design Criteria

Design Issue	Conserved Open Space	Vegetated Filter Strip		
Soil and Vegetative Cover (Sections 6.1 and 6.2)	Undisturbed soils and native vegetation	Amended soils and dense turf cover or landscaped with herbaceous cover, shrubs, and trees		
Overall Slope and length (parallel to the flow) (Section 5)	0.5% to 3% Slope – Minimum 35 ft length 3% to 6% Slope – Minimum 50 ft length The first 10 ft. of filter must be 2% or less in all cases ²	1% ¹ to 4% Slope – Minimum 35 ft. length 4% to 6% Slope – Minimum 50 ft. length 6% to 8% Slope – Minimum 65 ft. length The first 10 ft. of filter must be 2% or less in all cases		
Contributing Area of Sheet Flow (Section 5) Maximum flow length of 150 ft. from adjacent pervious areas; Maximum flow length of 75 ft. from adjacent impervious areas				
Level Spreader for dispersing Concentrated Flow (Section 6.3)	Length of ELS ⁶ Lip = 13 lin. ft. per each 1 cfs of inflow if area has 90% Cover ³ Length = 40 lin. ft. per 1 cfs for forested or re-forested Areas ⁴ (ELS ⁶ length = 13 lin.ft. min; 130 lin.ft. max.)	Length of ELS ⁶ Lip = 13 lin_ft. per each 1 cfs of inflow (13 lin_ft. min; 130 lin_ft. max.)		
Construction Stage (Section 8)	Located outside the limits of disturbance and protected by ESC controls	Prevent soil compaction by heavy equipment		
Typical Applications (Section 5)	Adjacent to stream or wetland buffer or forest conservation area	Treat small areas of IC (e.g., 5,000 sf) and/or turf-intensive land uses (sports fields, golf courses) close to source		
Compost Amendments (Section 6.1)	No	Yes (B, C, and D soils) ⁵		
Boundary Spreader (Section 6.3)	GD ⁶ at top of filter	GD ⁶ at top of filter <u>PB</u> ⁶ at toe of filter		
¹ A minimum of 1% is recommended to ensure positive drainage.				

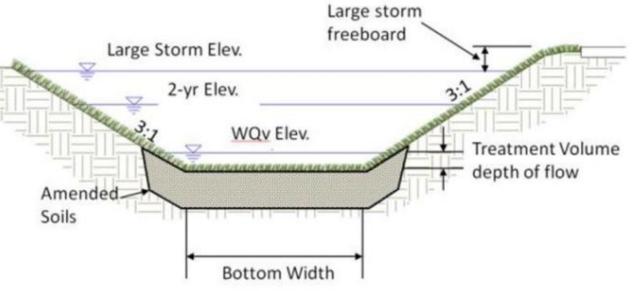
²For Conservation Areas with a varying slope, a pro-rated length may be computed only if the first 10 ft. is 2% or less.

³ Vegetative cover is described in Section 6.2.

⁴Where the conserved open space is a mixture of native grasses, herbaceous cover and forest (or re-forested area), the length of the ELS ⁶ Lip can be established by computing a weighted average of the lengths required for each vegetation type. Refer to Section 6.3 for design criteria ⁵ The plan approving authority may waive the requirement for compost amended soils for filter strips on B soils under certain conditions (see Section 6.1).

⁶ ELS = Engineered Level Spreader; GD = Gravel Diaphragm; PB = Permeable Berm.

Soil Amendments



Grass Channels

Key Design Consideration: Soils

- Infiltration is greatest in HSG A soils;
- Infiltration gradually decreases in HSG B, C and D soils;
- HSG C and D soils lining the bottom of the Grass Channel can be amended to improve performance

Permeable Pavement

Stormwater Function	Level 1 Design	Level 2 Design	
Annual Runoff Volume Reduction (RR)	45%	75%	
Total Phosphorus (TP) EMC Reduction ¹ by BMP Treatment Process	25%	25%	
Total Phosphorus (TP) Mass Load Removal	59%	81%	
Total Nitrogen (TN) EMC Reduction ¹	25%	25%	
Total Nitrogen (TN) Mass Load Removal	59%	81%	
Channel Protection	 Use <u>VRRM</u> Compliance spreadsheet to calculate a Curve Number (CN) adjustment²; OR Design extra storage in the stone underdrain layer and peak rate control structure (optional, as needed) to accommodate detention of larger storm volumes. 		
Flood Mitigation	Partial. May be able to design additional storage into the reservoir layer by adding perforated storage pipe or chambers.		

¹ Change in event mean concentration (EMC) through the practice. Actual nutrient mass load removed is the product of the removal rate and the runoff reduction rate (see Table 1 in the *Introduction to the New Virginia Stormwater Design Specifications*).

² NRCS TR-55 Runoff Equations 2-1 thru 2-5 and Figure 2-1 can be used to compute a curve number adjustment for larger storm events based on the retention storage provided by the practice(s).

Sources: CWP and CSN (2008) and CWP (2007)

Bioretention

Summary of Stormwater Functions¹

Stormwater Function	Level 1 Design	Level 2 Design	
Annual Runoff Volume Reduction (RR)	40%	80%	
Total Phosphorus (TP) EMC Reduction ¹ by BMP Treatment Process	25%	50%	
Total Phosphorus (TP) Mass Load Removal	55%	90%	
Total Nitrogen (TN) EMC Reduction ¹ by BMP Treatment Process	40%	60%	
Total Nitrogen (TN) Mass Load Removal	64%	90%	
Channel and Flood Protection	 Use the Virginia Runoff Reduction Method (VRRM) Compliance Spreadsheet to calculate the Curve Number (CN) Adjustment OR Design extra storage (optional; as needed) on the surface, in the engineered soil matrix, and in the stone/underdrain layer to accommodate a larger storm, and use NRCS TR-55 Runoff Equations² to compute the CN Adjustment. 		

¹ Change in event mean concentration (EMC) through the practice. Actual nutrient mass load removed is the product of the removal rate and the runoff reduction rate(see Table 1 in the *Introduction to the New Virginia Stormwater Design Specifications*).

² NRCS TR-55 Runoff Equations 2-1 thru 2-5 and Figure 2-1 can be used to compute a curve number adjustment for larger storm events based on the retention storage provided by the practice(s). Sources: <u>CWP</u> and <u>CSN</u> (2008) and <u>CWP</u> (2007)

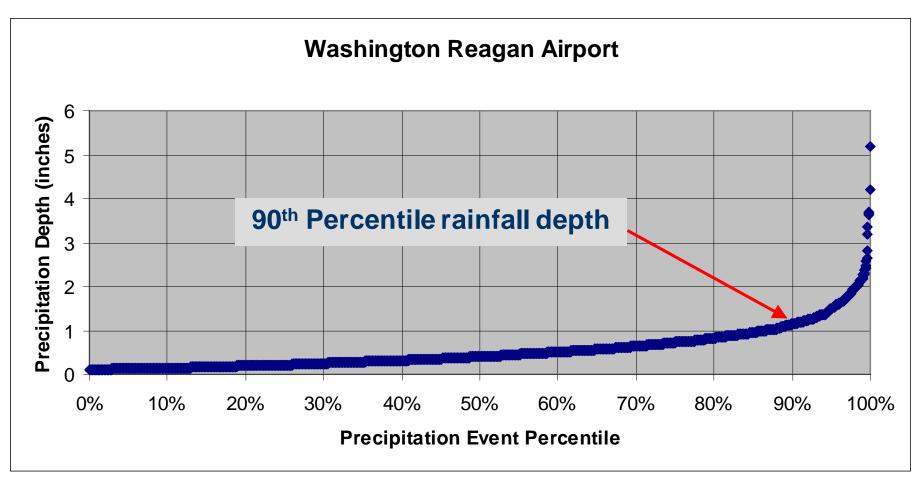
Stantec

Stormwater Quantity Analysis Considering Volume

Treatment Volume & BMP Sizing

$$Tv_{BMP} = \underbrace{\left(P \times Rv_{composite} \times A\right)}_{12}$$

Where:


- Tv_{BMP} = Design Treatment Volume from the contributing drainage area to the stormwater practice (does not include remaining runoff from upstream practices)
- **P** = 90th Percentile rainfall depth = 1"

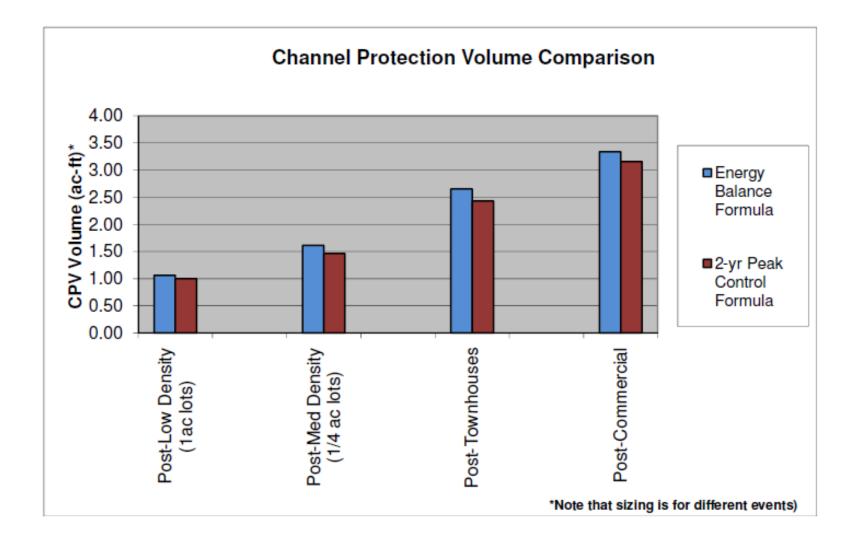
 $Rv_{composite}$ = Composite runoff coefficient

A = Contributing drainage area to the stormwater practice.

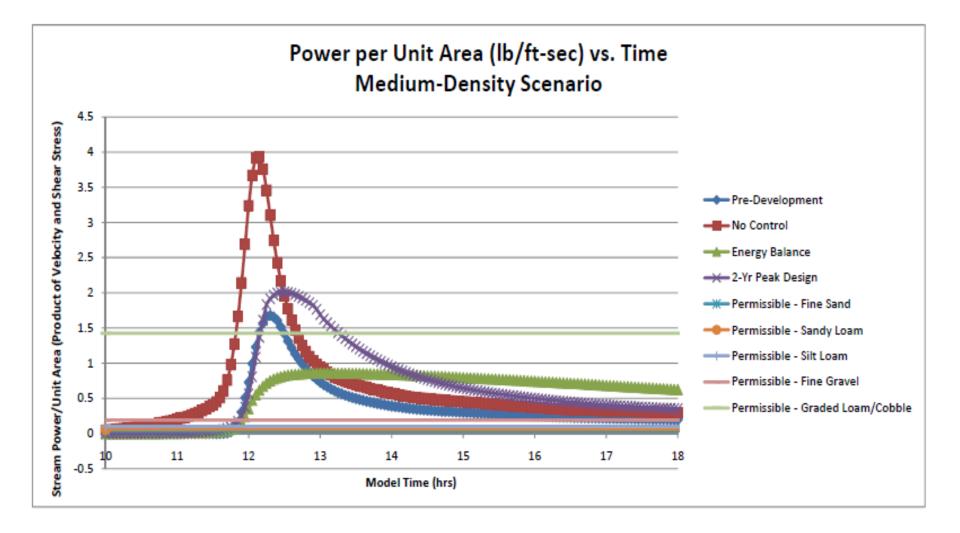
Design Rainfall = 90^{th} percentile rainfall depth = 1"

1" annual average: Washington Reagan Airport, Richmond Airport, Harrisonburg, Lynchburg, Bristol

Small Storm Hydrology


Volume Management focused on small storms

Focus is on minimizing increases in stream power and energy Replicating depressional storage and abstraction from natural watersheds


Sizing Comparison (+ 5-10%)

Release Rate Comparison

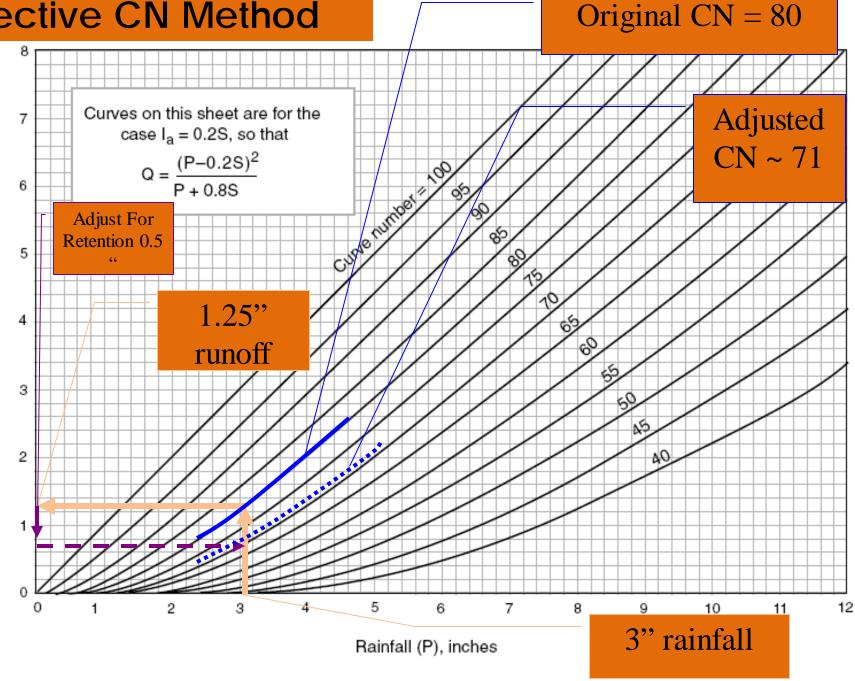
Stream Power Comparison

Challenge

Provide quantity "credit" for distributed retention practices
Avoid Complex routing/modeling
Allow designers to target volume as a primary metric (quantity and quality)
Various methods explored

Table 4. Review of Recent Research on Volumetric					
Runoff Reduction by LID Practices					
LID Practice	% Runoff	Reference			
	Reduction				
Bioretention	99	Dietz and Clausen			
		(2006)			
Bioretention	58	Seters et al (2006)			
Bioretention	98	Rushton (2002)			
Bioretention	50	Hunt et al (2006)			
Bioretention	40 to 60	Smith and Hunt (2007)			
Bioretention	75	Ballestro et al (2006)			
Bioretention	80	Traver et al (2006)			
Bioretention	73	Lloyd et al (2002)			
Biofiltration Swale	98	Horner et al (2003)			
Biofiltration Swale	94	Jefferies (2004)			
Bioflitration Swale	46 to 54	Stagge (2006)			
Permeable	75	Rushton (2002)			
Pavement					
Permeable	99	Seters et al (2006)			
Pavement					
Permeable	95 to 97	Traver et al (2006)			
Pavement					
Permeable	60 to 90	Hunt and Lord (2006)			
Pavement					
Permeable	50	Jefferies (2004)			
Pavement					
Rainwater	60 to 90	Coombes et al (2004)			
Harvesting					

Volume Reduction: Hydrograph Modification


Objective: Account for hydrologic effect of distributed retention storage;

Simplifying Assumptions:

- Assume retention is uniformly distributed if considering multiple features or sub-areas;
- Assume negligible discharge from under-drains (if any)

Effective CN Method

Direct runoff (Q), inches

Site Parameters:~39 Ac, Pre-CN=70, Post-CN=80, Lag time = 20 min(pre/post)

Design Approach	Original CN	Adjusted CN _(1-year)	Runoff (in)	Add'I Detention Storage Req'd (ft ³)	Treatment Approach
Conventional Design	80	80	1.25	73000	Treat with 2 acre wet pond
LID Practices	80	75	0.95	37000	Bioretention, Grassed Channels w/ soil amendments
Better Site Design with LID	80	73	0.85	28000	Reduce Impervious Cover, Reduce Turf Acreage + above
Pre-Development	70	N/A	0.71	N/A	N/A

Recurrence Interval

	1-yr	2-yr	10-yr
Total Rainfall (in)	2.6	3.5	5.6
Pre-dev CN	70	70	70
Pre-Dev Runoff (in)	0.50	1.01	2.49
Post-Dev CN	80	80	80
Runoff (in.)	0.96	1.64	3.43
Runoff Reduction Vol. (in.)	0.27	0.27	0.27
Net Runoff (w/ RRM, in)	0.69	1.37	3.16
CN Adjusted for RRM	75	76	77
% Redux In Runoff Volume	28.0%	16.4%	7.9%

Questions?

Doug Beisch - Principal Doug.Beisch@Stantec.com 757-810-2687

Special Thanks to the **Center for Watershed Protection** for helping to organize training materials for Stantec and the Virginia DEQ. Most figures/images sourced from Virginia DEQ training materials compiled by Stantec and CWP.

