
Stormwater Hydrology, Pollutant Sources, Loadings, Removal Mechanisms, and Monitoring

Jeff Herr, P.E., D.WRE

Global Water Perspective

- Freshwater accounts for less than 3% of the total water on the earth
- Groundwater accounts for ~ 0.7% of the earth's freshwater
- < 0.1% of the freshwater on the earth is in surface waters</p>

Water Resources

- SE states receive 34 to 57 inches of rainfall each year
- Rainfall volume is >>>> water demand
- Much of our rainfall becomes runoff and is lost to tide
- Stormwater runoff is naturally self-sustaining; pending major changes from climate change it will continue to rain

Brown and Caldwell

Hydrology: Most rainfall events are 1-inch or less Manage common rain events for WQ improvement

Rainfall Event Range (inches)	Mean Rainfall Depth (inches)	Mean Rainfall Duration (hours)	Fraction of Annual Rain Events	Number of Annual Events in Range	
0.00-0.10	0.041	1.203	0.427	56.683	
0.11-0.20	0.152	2.393	0.142	18.866	
0.21-0.30	0.252	3.073	0.080	10.590	
0.31-0.40	0.353	3.371	0.055	7.312	
0.41-0.50	0.456	3.702	0.048	6.325	
0.51-1.00	0.713	4.379	0.129	17.102 (117)	
1.01-1.50	1.221	5.758	0.051	6.733	
1.51-2.0	1.726	7.852	0.024	3.145	
2.01-2.50	2.271	8.090	0.011	1.470	
2.51-3.00	2.704	10.675	0.006	0.726	
3.01-3.50	3.246	9.978	0.003	0.391	
3.51-4.00	3.667	13.362	0.002	0.260	
4.01-4.50	4.216	15.638	0.001	0.149	
4.51-5.00	4.796	17.482	0.000	0.056	
5.01-6.00	5.454	23.303	0.001	0.167	
6.01-7.00	6.470	470 40.500 0.000		0.019	
7.01-8.00	7.900	31.500	0.000	0.019	
8.01-9.00	8.190	3.500	0.000	0.019	
Caldwell>9.00	10.675	46.250	0.001	0.075	

Minimal runoff from pervious areas and N-DCIA Even in HSG 'D' soils – DCIA is the driver

					Runof	f depth f	or curve n	umber of-	_				
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
							inches						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77

Brown and Caldwell

Which Pollutants? Which Forms?

- Sediment
- Biochemical oxygen demand
- Pathogens
- Phosphorus: SRP, OP, TP
- Nitrogen: TKN = Org N + NH3; NOX = NO2 + NO3
 TN = TKN + NOX
 (Only some forms of nutrients are bioavailable)
- Metals
- Toxic compounds

The form matters for BMP selection:

Organic or inorganic, dissolved or particulate

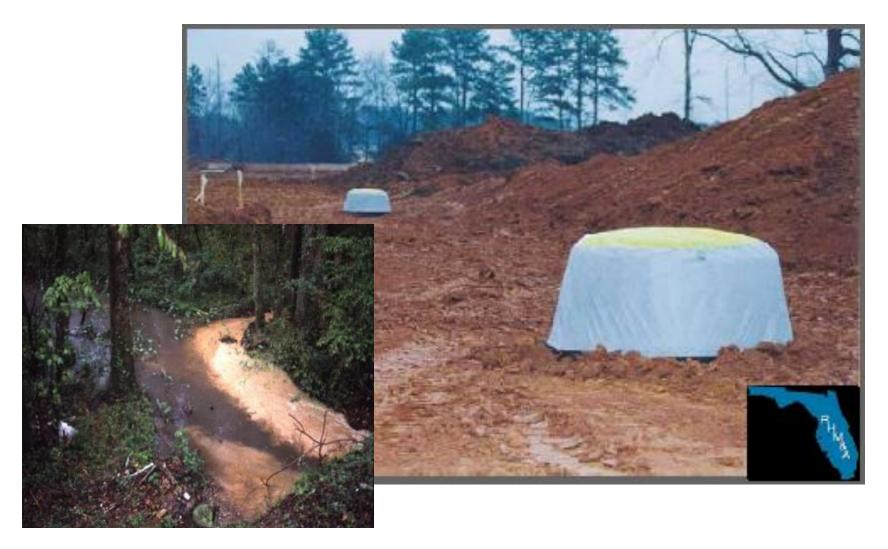

Brown and Caldwell

Stormwater Pollutant Sources

POLLUTANT	PRIMARY SOURCES
Particulates	Soil erosion, sedimentation, pavement wear, atmosphere-fossil fuels, maintenance
Nutrients – N and P	Fossil fuels, fertilizer application, pets, septic tanks, sewer spills, wastewater reuse, soil erosion
Zinc	Tire wear, motor oil, grease
Copper	Metal plating, bearing and bushing wear, moving engine parts, brake lining wear, fungicides and insecticides
Cadmium	Tire wear, insecticides
Chromium	Metal plating, moving engine parts, brake linings
Nickel	Diesel fuel and gasoline, lubricating oils, metal plating, bushing wear, brake linings, asphalt
Petroleum	Spills, leaks or blow-by of motor lubricants, antifreeze and hydraulic fluids, asphalt
Pathogens	Birds, animal waste, septic tanks, sewer spills
Synthetic organics	Industrial processes, pesticides, insecticides, spills, asphalt

Some pollutants are visible and others are not.

Brown and Caldwell


Personal Pollution- Gross Pollutants, BOD

Organic Debris - TSS, N, P, BOD

Construction Erosion Sediment, Turbidity, P

Combustion of Fossil Fuels N, metals

Vehicles – particulates, metals, oils and greases

Sanitary Sewer Overflows N, P, BOD, Pathogens

Wastewater Reuse N, P, BOD

Natural Systems – Sediment release of N, P; Wildlife - Pathogens, N, P, BOD

In-Stream Erosion TSS, Turbidity, P

Impacts of Stormwater Pollutants

- Gross solids (trash, debris, organic material)
- aesthetics, reduces conveyance, nutrient source
- Sediments reduces conveyance, contains other pollutants
- Oxygen demanding substances (BOD, COD)
 - reduces DO, impacts aquatic life, fish kills
- Nutrients (nitrogen and phosphorus)
 - eutrophication, oxygen demand
- Pathogens (bacteria and viruses)
 - impacts wildlife, aquatic life, human illnesses
- Heavy metals toxic to wildlife, aquatic life, humans (lead, zinc, cadmium, chromium, copper, nickel)
- Oil & grease, hydrocarbons
 - toxic to wildlife, aquatic life, humans

Less Common Pollutants (all toxic)

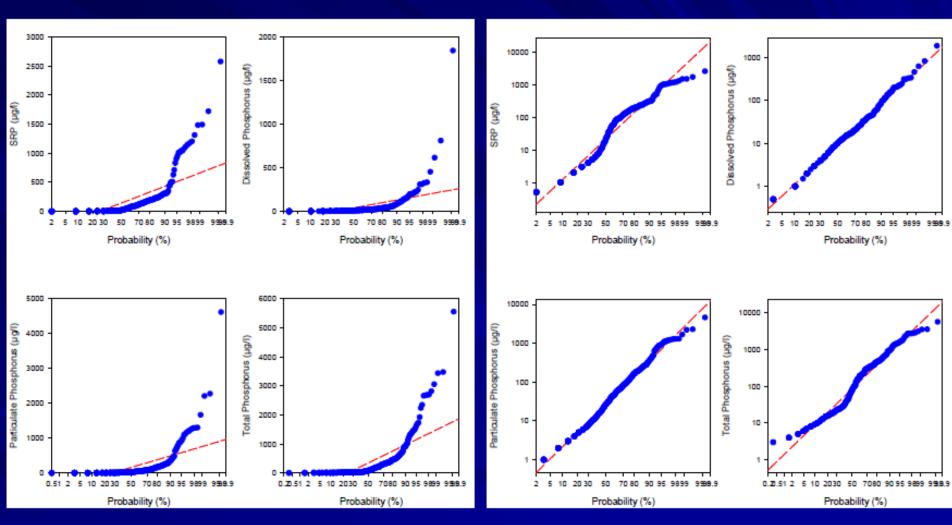
- Insecticides/Pesticides
- Radioactive materials
- Solvents
- Other hazardous chemicals

SUMMARY OF LITERATURE-BASED RUNOFF CHARACTERIZATION DATA FOR GENERAL LAND USE CATEGORIES IN FLORIDA

LAND USE	TYPICAL RUNOFF CONCENTRATION (mg/l)								
CATEGORY	TOTAL N	TOTAL P	BOD	TSS	COPPER	LEAD	ZINC		
Low-Density Residential ¹	1.61	0.191	4.7	23.0	0.0084	0.0024	0.0314		
Single-Family	2.07	0.327	7.9	37.5	0.016	0.004	0.062		
Multi-Family	2.32	0.520	11.3	77.8	0.009	0.006	0.086		
Low-Intensity Commercial	1.18	0.179	7.7	57.5	0.018	0.005	0.094		
High-Intensity Commercial	2.40	0.345	11.3	69.7	0.015		0.160		
Light Industrial	1.20	0.260	7.6	60.0	0.003	0.002	0.057		
Highway	1.64	0.220	5.2	37.3	0.032	0.011	0.126		
Agricultural									
Pasture	3.47	0.616	5.1	94.3					
Citrus	2.24	0.183	2.55	15.5	0.003	0.001	0.012		
Row Crops	2.65	0.593		19.8	0.022	0.004	0.030		
General Agriculture ²	2.79	0.431	3.8	43.2	0.013	0.003	0.021		
Undeveloped / Rangeland / Forest	1.15	0.055	1.4	8.4					
Mining / Extractive	1.18	0.15	7.6^{3}	60.0 ³	0.003 ³	0.002^3	0.057 ³		

- 1. Average of single-family and undeveloped loading rates
- 2. Mean of pasture, citrus, and row crop land uses
- 3. Runoff concentrations assumed equal to industrial values for these parameters
- 4. Value assumed to be equal to 50% of single-family concentration

Source: Harper

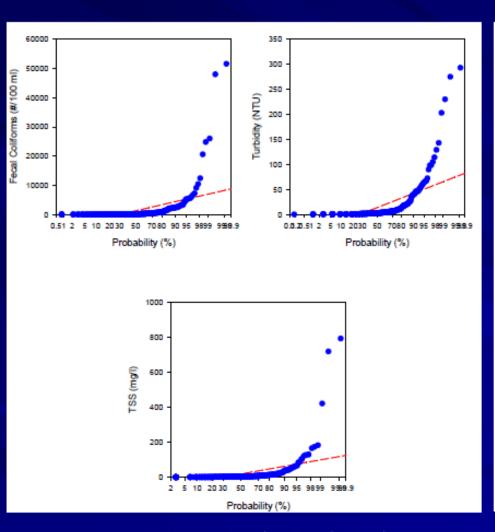

SUMMARY OF CALCULATED AREAL POLLUTANT LOADING RATES FOR CENTRAL AND SOUTH FLORIDA

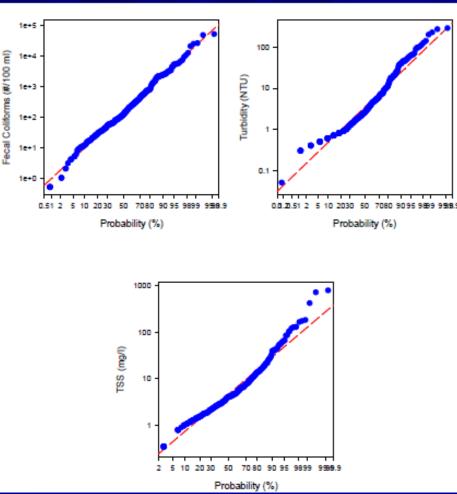
Development significantly increases pollutant loadings

	AREAL LOADING RATE (kg/ac-yr)								
LAND USE CATEGORY	TOTAL N	ORTHO-P	TOTAL P	BOD	TSS	TOTAL Zn	TOTAL Pb		
Low Density Residential	2.88	0.169	0.320	7.63	31.9	0.06	0.052		
Single-Family	4.68	0.335	0.594	14.3	56.1	0.122	0.083		
Multi Family	8.51	0.924	1.72	38.4	256	0.188	0.299		
Low-Intensity Commercial	5.18	0.157	0.650	36.1	343	0.511	0.635		
High Intensity Commercial	13.0	1.52	1.96	79.3	435	0.782	0.985		
Industrial	7.30	0.519	1.24	39.5	383	0.543	0.872		
Highway	6.69	0.361	1.32	21.9	182	0.508	0.727		
Ag – Pasture	4.54	0.732	0.876	7.99	126				
Ag - Citrus	2.91	0.123	0.197	3.60	21.9				
Ag - Row Crops	2.84	0.421	0.595						
General Ag	3.62	0.380	0.551	5.80	74.0				
Undeveloped	1.07	0.003	0.046	0.96	7.60	0.005	0.021		
Mining	2.21	0.131	0.281	18.0	176	0.229	0.378		
Wetland	1.81	0.204	0.222	4.96	11.2	0.009	0.039		
Open Water	3.23	0.130	0.273	4.02	8.05	0.073	0.065		

SOURCE: HARPER

Statistical Evaluation of Data Probability Plots – Phosphorus Species

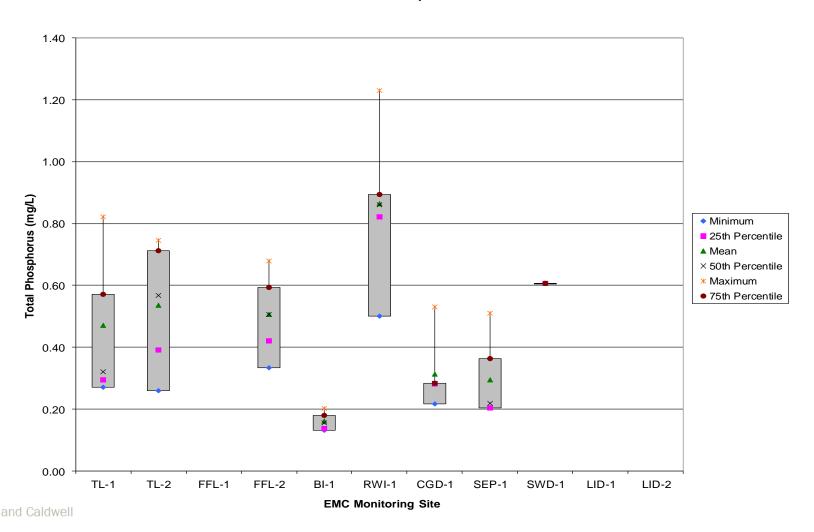



Normal Probability Distribution

Log-Normal Probability Distribution

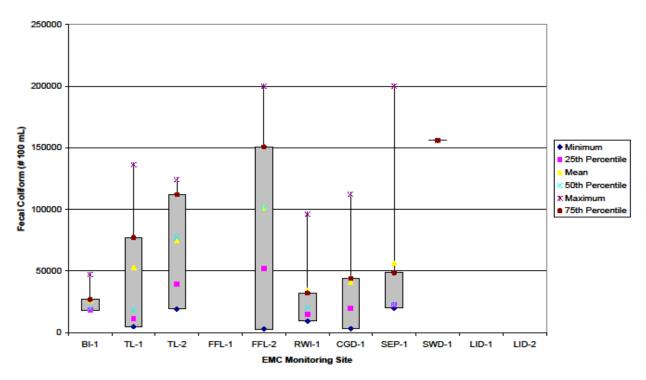
Source: Harper 2011

Statistical Evaluation of Data Probability Plots – Fecal, Turbidity & TSS

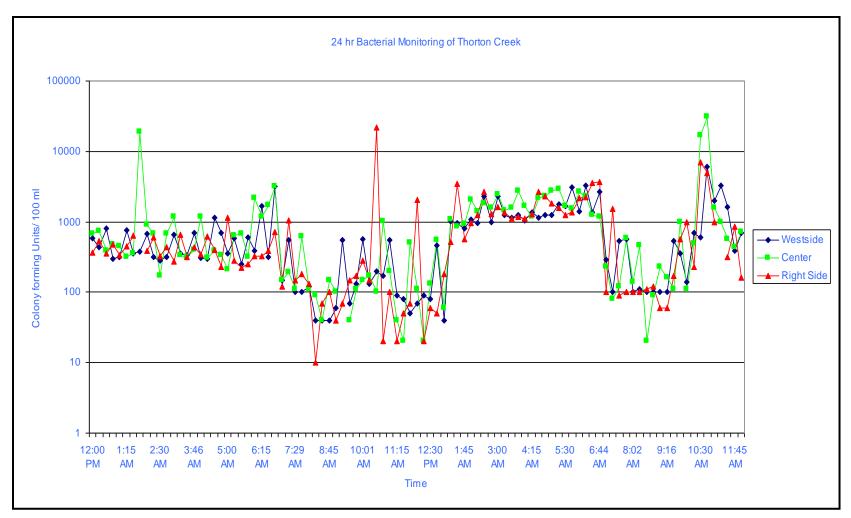

Normal Probability Distribution

Log-Normal Probability Distribution

Source: Harper 2011


Stormwater pollutant concentrations are highly variable even at the same site

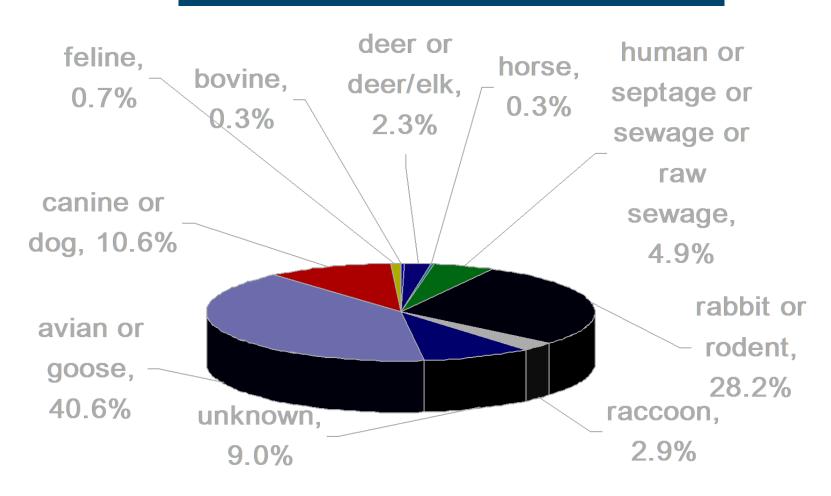
Total Phosphorus



Stormwater pollutant concentrations are highly variable even at the same site

Fecal Coliform (# 100 mL) for EMC Monitoring Sites

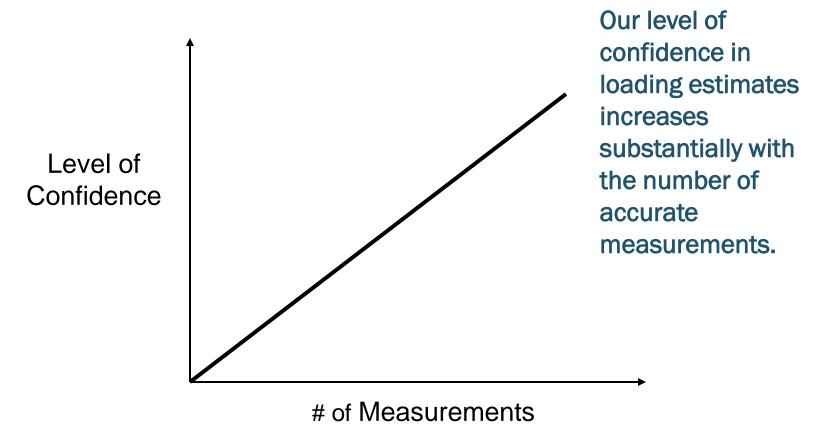
Fecal Coliform Variability


Fecal coliform ranged from 10 to >10,000 within 24-hour period. Source: BC 2007

Potential Pathogens in Stormwater

- Bacteria: campylobacter, salmonella, E. Coli, Shigella
- Viruses: cryptosporidia, giardia
- Parasites: cercarial dermatitis (swimmer's itch)

MST Results – All Stations, All Rounds Combined


Stormwater Pollutant Removal Mechanisms

	MECHANISM	POLLUTANTS AFFECTED
	Sedimentation Filtration	Solids, BOD, COD, P, N, metals pathogens, synthetic organics Same as sedimentation
	Soil incorporation Chemical ppt. Adsorption	All Particulates, P, Dissolved P, metals, pathogens Dissolved P, metals, syn. organics
	Ion Exchange Oxidation	Dissolved metals COD, BOD, petroleum hydrocarbons (PHs), synthetic organics, pathogens
	Photolysis Volatilization	Same as oxidation Volatile PHs, syn. organics
	Microbial Decomposition	BOD, COD, PHs, syn. organics
	Plant uptake Natural die-off Nitrification	N, P, metals Pathogens NH ₃ -N, organic N
woll	Denitrification	$NO_3 + NO_2$

Brown and Caldwe

How Do We Estimate Pollutant Loadings?

- 1. Perform Measurements
- 2. Estimate Using Models

Flow and Concentration Monitoring is Essential

Sources of Pollutants in a Watershed

Point Sources

- Wastewater discharges
- Industrial discharges
- Combined wet weather discharges
- Sanitary sewer overflows
- Agricultural discharges
 <u>Major source but rarely</u>

 <u>regulated</u>.

Non - Point Sources

- Stormwater discharges
- Septic systems
- Groundwater seepage
- Atmospheric deposition (primarily N)
- Bird, pet, wildlife waste
- Fertilizer
- Internal nutrient recycling from water bottom sediments

Non-point sources are typically a much larger pollutant source than point sources in a watershed. Some sources are very difficult to quantify.

Brown and Caldwell

Sediment and Groundwater Seepage Testing Critical for Lakes (streams)

Thank you!

