# CASE STUDY ON BMP SELECTION

How adaptive management has driven the evolution of BMP selection in the Town of Bluffton.

# Background

The May River, development & water quality.

#### May River Importance

Historic & Cultural uses

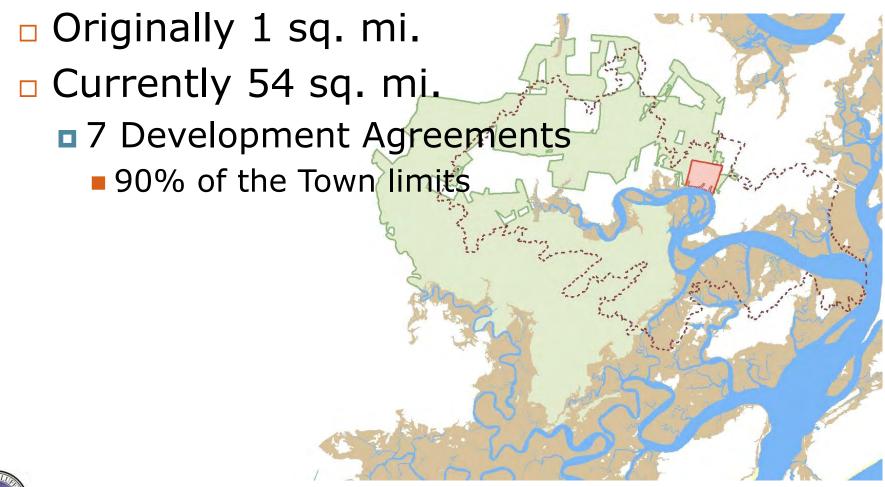




 Adds to the quality of life for citizens



#### May River Importance


Direct & indirect economic impacts

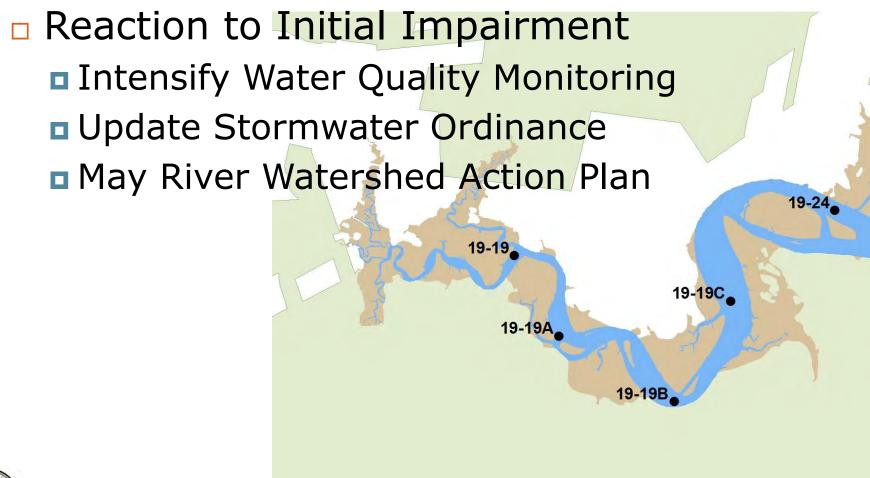


Natural resource populations harvested & used



### Bluffton Expands






### Bluffton Expands

- Development began with the health of the May River in mind.
  - Baseline Study
    - Establish pre-development benchmark
  - Development Agreement language
    - Must stay current with Stormwater Ordinance
    - Mitigate proposed impervious surface

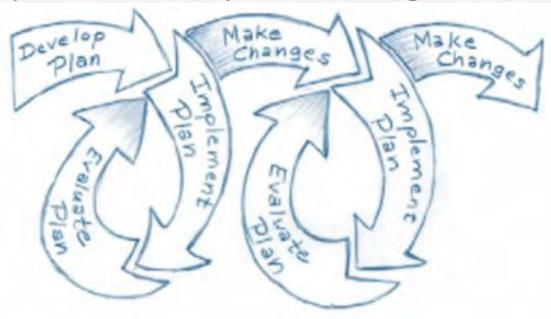


### May River Impairment





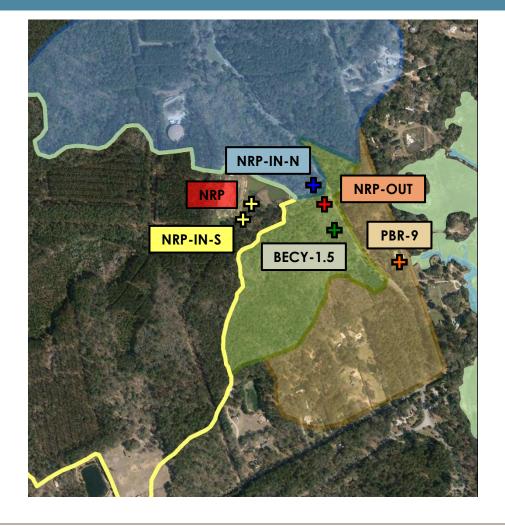
### May River Impairment


- Reaction to Initial Impairment
  - Intensify Water Quality Monitoring
    - Evaluate BMP efficacy
  - Update Stormwater Ordinance
    - Volume control for water quality
  - May River Watershed Action Plan
    - Adaptive Management Approach
      - Develop
      - Implement
      - Evaluate
      - Modify



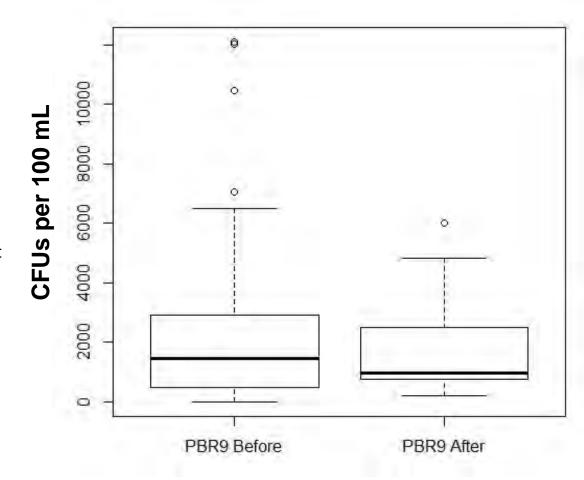
19-19C\_

# Case Study


Using pre- vs. post- project water quality testing to complete the adaptive management loop.



New Riverside Pond 34,000 CY \$360,000




- New Riverside Pond
  - Existing Sampling Sites:
    - BECY-1.5, PBR-9
  - Added 4 Sampling Sites Post Project
  - Pre vs. PostDownstream Impact





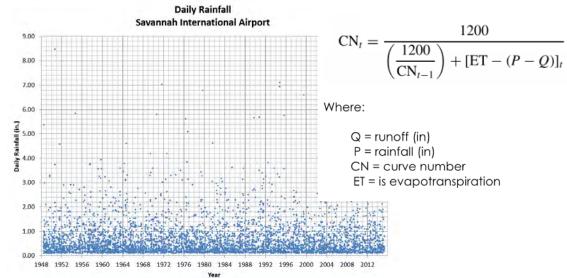
- New Riverside Pond
  - Existing Sampling Sites:
    - BECY-1.5, PBR-9
  - Added 4 Sampling Sites Post Project
  - Pre vs. Post Downstream Impact:
    - Not statistically significant evidence that the mean concentration of fecal coliform at PBR9 before pond construction (2406 CFUs per 100 mL) is greater than that after construction (1863 CFUs per 100 mL).

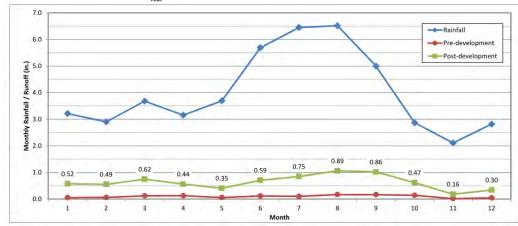




#### Lessons Learned

- BMP Selection changes based on site location:
  - Site BMPs at the water's edge.
  - Use In-Series BMPs to retain efficacy and slow velocity.
  - Remove volume instead of concentration if efficacy cannot be maintained.





- Pine Ridge BMP Retrofit
  - Irrigation reuse
  - Pre Project Data Collection
    - Rainfall
    - Outfall Pipe Velocity
    - Pond Level Loggers

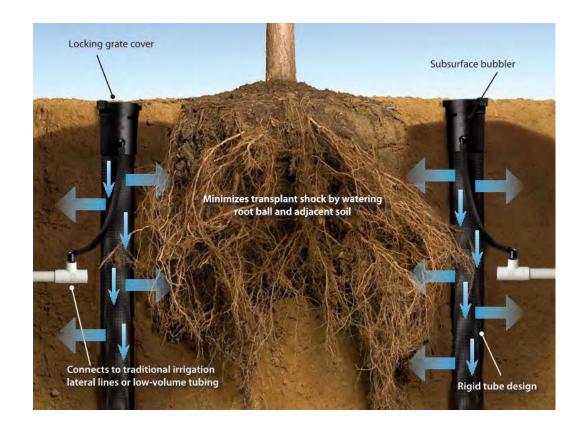




- Pine Ridge BMP Retrofit
  - Irrigation reuse
  - Pre Project Data Collection
    - Rainfall
    - Outfall Pipe Velocity
    - Pond Level Loggers
  - Project Design
    - Continuous Simulation
    - Pump Sizing
    - Subsurface Irrigation

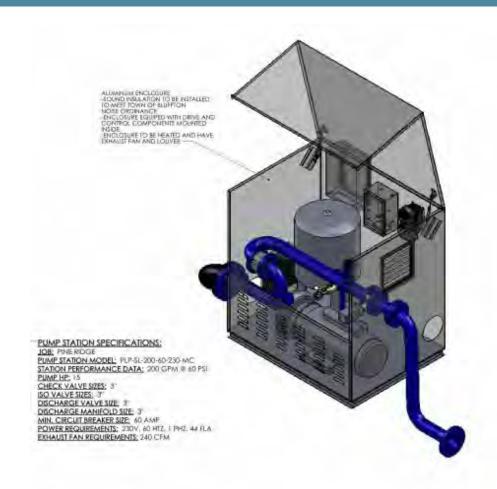







- Pine Ridge BMP Retrofit
  - Irrigation reuse
  - Pre Project Data Collection
    - Rainfall
    - Outfall Pipe Velocity
    - Pond Level Loggers
  - Project Design
    - Continuous Simulation
    - Pump Sizing
    - Subsurface Irrigation

|                                 | TOTAL        |              |             |               |                |
|---------------------------------|--------------|--------------|-------------|---------------|----------------|
|                                 |              |              |             | Target        | Actual         |
|                                 |              |              |             | Irrigation    | Irrigation     |
|                                 | Runoff       | Captured     |             | Application   | Application    |
|                                 | Volume (ft3) | Runoff (ft3) | Loss (ft3)  | Volume (ft3)  | Volume (ft3)   |
|                                 |              | % of Runoff  | % of Runoff |               | % of Target    |
| Condition                       |              | Vol          | Vol         |               | Irr. App. Vol. |
| Base                            | 179,330,874  | 80,961,958   |             | 144,486,219   | 80,701,902     |
|                                 |              | 45%          | 55%         |               | 56%            |
| Double Target Irr. App Rate     | 179,330,874  | 103,793,667  | 75,537,208  | 288,972,438   | 103,547,620    |
|                                 |              | 58%          | 42%         |               | 72%            |
| Quadruple Target Irr. App. Rate | 179,330,874  | 116,292,220  | 63,038,655  | 577,944,877   | 116,074,191    |
|                                 |              | 65%          | 35%         |               | 80%            |
| Double Available Pond Vol.      | 179,330,874  | 97,058,191   | 82,272,683  | 144,486,219   | 96,524,071     |
|                                 |              | 54%          | 46%         |               | 67%            |
| Quadruple Available Pond Vol.   | 179,330,874  | 113,541,442  | 65,789,433  | 144,486,219   | 112,459,191    |
|                                 |              | 63%          | 37%         |               | 78%            |
| Constant 70 gpm PS / Pond       | 179,330,874  | 100,609,309  | 78,721,565  | 274,456,655   | 100,368,934    |
|                                 |              | 56%          | 44%         |               | 69%            |
| Constant 100 gpm PS / Pond      | 179,330,874  | 109,084,500  | 70,246,374  | 392,057,123   | 108,858,561    |
|                                 |              | 61%          | 39%         |               | 75%            |
| Constant 200 gpm PS / Pond      | 179,330,874  | 118,713,274  | 60,617,600  | 784,156,439   | 118,552,267    |
|                                 |              | 66%          | 34%         |               | 82%            |
| Constant 200 gpm PS / Pond      | 179,000,074  | 121,027,100  | 57,500,606  | 1,176,206,077 | 121,750,770    |
|                                 |              | 68%          | 32%         |               | 84%            |
| Constant 600 gpm PS / Pond      | 179,330,874  | 125,035,449  | 54,295,426  | 2,352,407,069 | 125,035,449    |
|                                 |              | 70%          | 30%         |               | 87%            |




- Pine Ridge BMP Retrofit
  - Irrigation reuse
  - Pre Project Data Collection
    - Rainfall
    - Outfall Pipe Velocity
    - Pond Level Loggers
  - Project Design
    - Continuous Simulation
    - Pump Sizing
    - Subsurface Irrigation





- Pine Ridge BMP Retrofit
  - Irrigation reuse
  - Pre Project Data Collection
    - Rainfall
    - Outfall Pipe Velocity
    - Pond Level Loggers
  - Project Design
    - Continuous Simulation
    - Pump Sizing
    - Subsurface Irrigation
  - Post ProjectMonitoring
    - Add Irrigation Pump Usage Report





#### Conclusion

- Adaptive management provides insight into which efforts should, or should not, continue. For those projects & programs that continue, identify additional data needs.
- Analysis provides guidance to determine which projects are most effective for our watershed conditions.

