GMC

Advancing Green Infrastructure in Coastal Georgia through Monitoring and a Case Study

Robert A. Brown, Ph.D., P.E. Goodwyn Mills Cawood (GMC) Brunswick, Georgia

SESWA 16th Annual Regional Stormwater Conference Virtual

October 8, 2021

Building Communities

GM()

Project Background & Case Study,

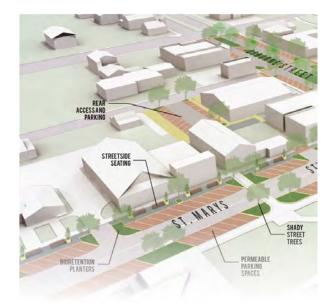
St. Marys, GA

DOWNTOWN ST. MARYS, GA: PRE-GI/LID

- Site Conditions
 - -Flat topography
 - -Lack of drainage infrastructure
 - -Narrow sidewalks
 - -Limited pedestrian facilities
 - -Large impervious surfaces

• 2008 Stormwater Masterplan

Drainage deficiencies & high priority sitesGray approach

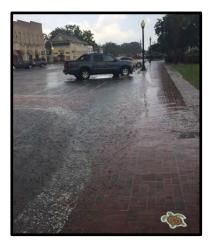

- 2014 St. Marys Watershed Management Plan

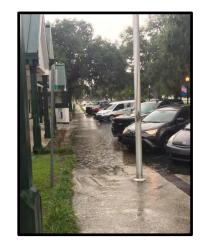
 Impaired waterway & recommended BMPs for GI/LID
 Eligibility for Section 319(h) funding from GAEPD
- 2014 St. Marys Flood Resiliency Plan

Downtown core is vulnerable to flooding (now and in future); recommended stormwater improvements

• 2016 Downtown St. Marys Strategic Vision & Plan

 Recommended green infrastructure practices as part of streetscape enhancements




PROJECT GOALS

- Enhance roadway and pedestrian access
- Address nuisance flooding
- Grant funding to expand footprint –GDOT LMIG & GAEPD Section 319(h)

–Phase 1: St. Marys Street; Phase 2: City Hall

- Two project phases; ~\$500K grant funds
- Most of grant funds paid for green infrastructure elements
 - -19,300 SF perm. pave. & 7,600 SF bioretention
- Monitoring & outreach/education components

PHASE 1 RIBBON CUTTING – OCTOBER 18, 2019

LOOKING WEST ON ST. MARYS STREET (FROM OSBORNE STREET)

PHASE 1 – ST. MARYS STREET

Before: 6/12/2018

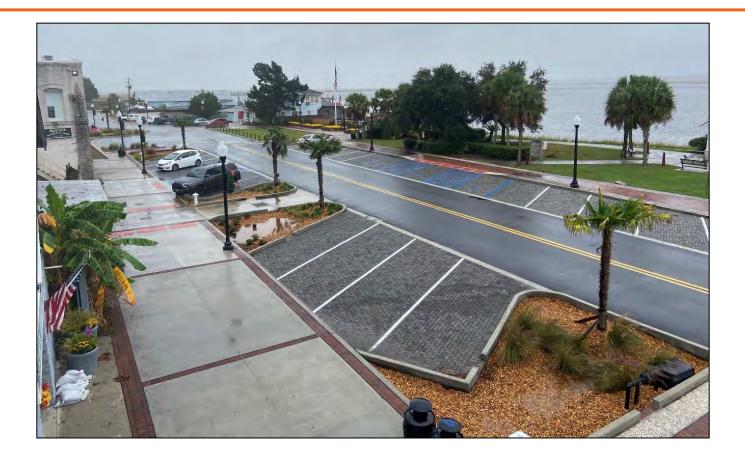
After: 8/19/2020

PHASE 2 – CITY HALL (OSBORNE STREET)

Before: 6/12/2018

After: 8/19/2020

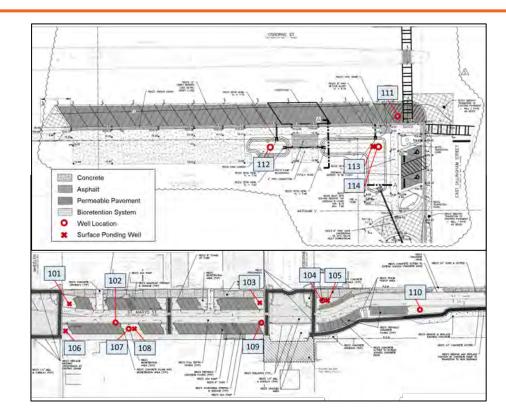
ADDITIONAL PHOTOS – SPRING 2020

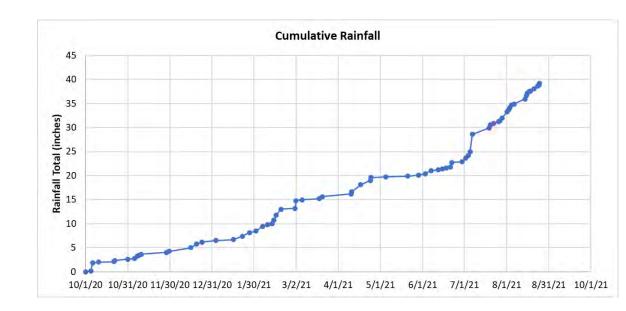


FINISHED SITE – IN ACTION

GM()

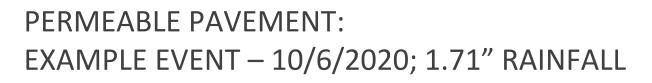
Research Program & Monitoring Results: Hydrologic

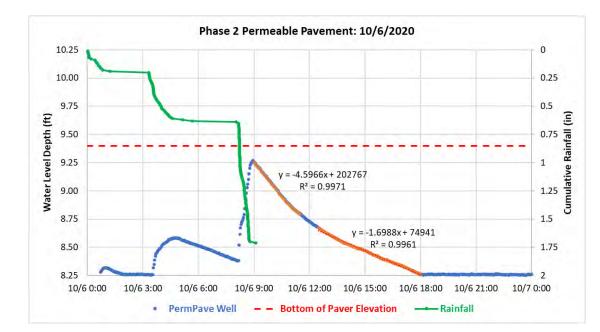

HYDROLOGIC MONITORING EQUIPMENT


- 14 Shallow Wells
 - -Solinst Levelogger Edge
 - Non-vented water level datalogger
 - Extra barometric pressure logger
 - -Measure infiltration & exfiltration
- Tipping Bucket Rain Gauge
 - -Model runoff/inflow

- 11 Months 39.19 inches
 –Avg is upper 40s to low 50s
- Oct. June (9 months)
 –22.90 inches (58%)
 •~9" below normal
- July August (2 months)
 –16.29 inches (42%)
 ~3" above normal

RAINFALL SUMMARY


DEPLOYED AT CITY HALL (PHASE 2)

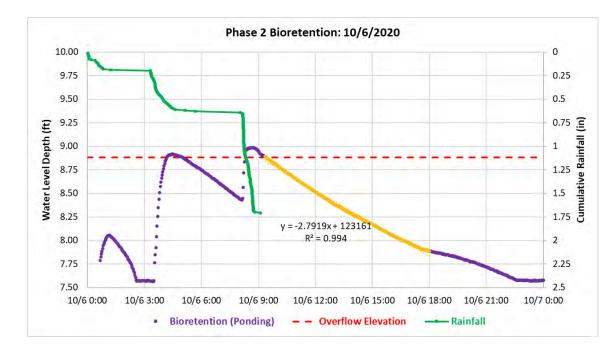

- Permeable Pavement
 - -Exfiltration Rate
- Bioretention
 - -Infiltration & Exfiltration Rate



- No Underdrain -Fully infiltrates runoff
- Exfiltration Rate
 - -Water level drawdown x35% porosity
 - -Upper: 0.8 in/hr
 - -Lower: 0.3 in/hr
- Bottom of Pavers is 9.4 ft
- Water depth 1.0 ft; near capacity
 - -Recovered completely in 9 hrs

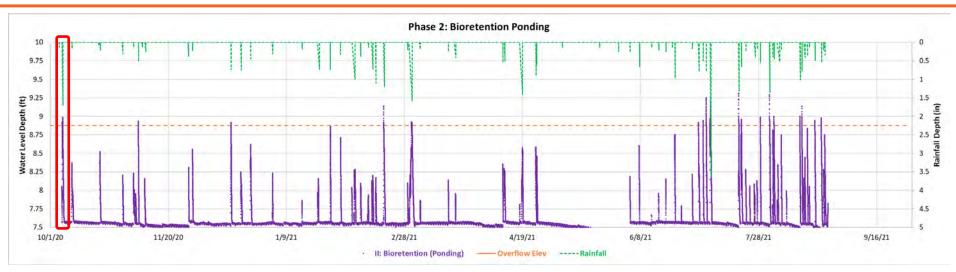
LONG-TERM MONITORING: PERMEABLE PAVEMENT PHASE 2

• 71 Events

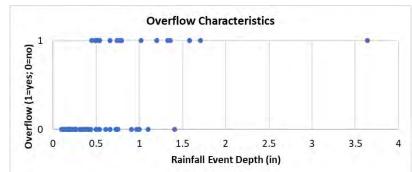

-1 event completely filled gravel storage layer

• Surface Condition

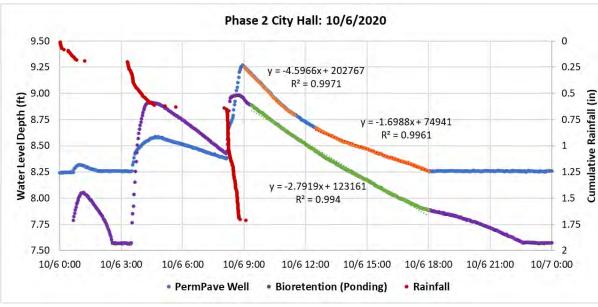
-Similar trends of water infiltrating through 1st year


BIORETENTION: EXAMPLE EVENT – 10/6/2020; 1.71" RAINFALL

- No Underdrain -Fully infiltrates runoff
- Infiltration Rate
 - -1.4 in/hr
- Overflow Grate: 8.9 ft
- Max ponding depth is ~1.3 ft
 - -Recovered completely in 14 hrs



LONG-TERM MONITORING: BIORETENTION PHASE 2


- 71 Events
 - -18 with Overflow (25%)
 - Smallest 0.45" & Largest without 1.41"
- Infiltration Rate Range:
 - -1.0 to 3.3 in/hr
 - Lower during extreme wet weather and when cooler

EXAMPLE EVENT – 10/6/2020; 1.71" RAINFALL

- Intra-event infiltration is substantial
- 3 segments over 8 hours

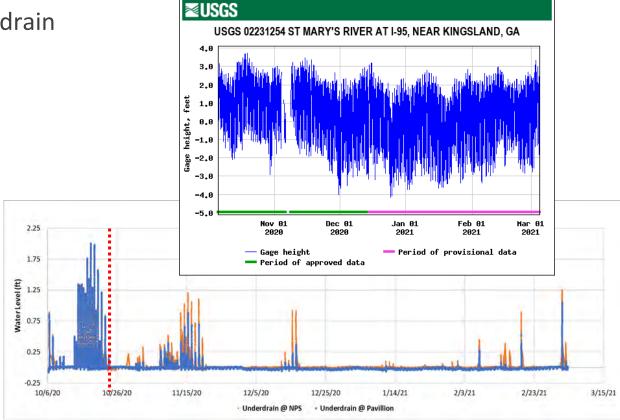
 $-0.19" \rightarrow 2 \text{ hrs} \rightarrow 0.44" \rightarrow 3 \text{ hrs} \rightarrow 1.08"$

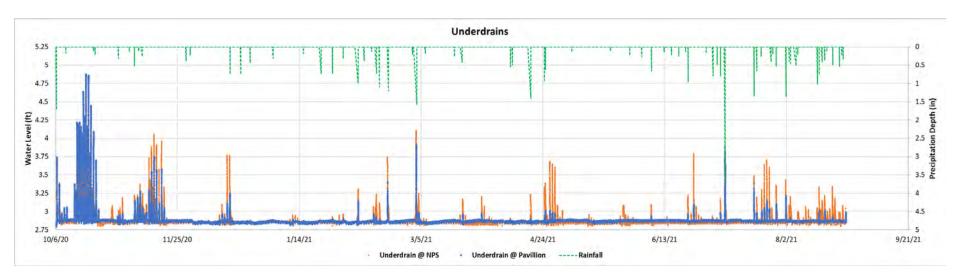
GMC

Capacity Elevations

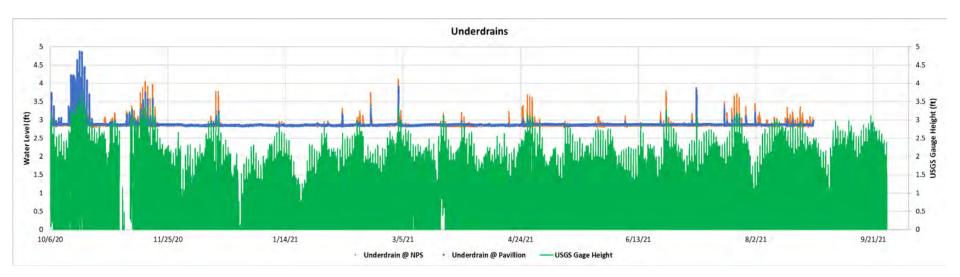
Bottom of Pavers: 9.4' (blue) Overflow Grate: 8.9' (purple)

PHASE 1 – TIDAL INFLUENCE

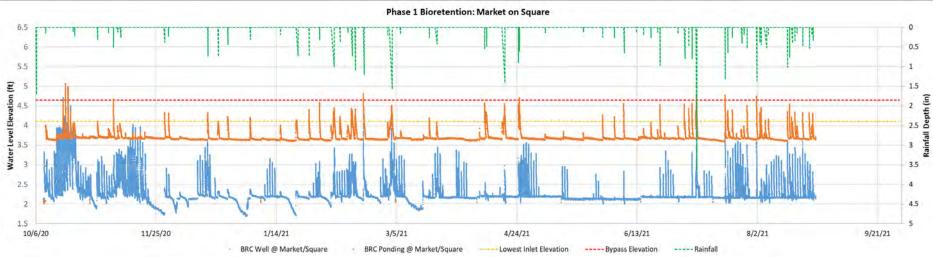



PHASE 1 – TIDAL INFLUENCE

• In-line tide flaps for underdrain installed Oct. 23, 2020

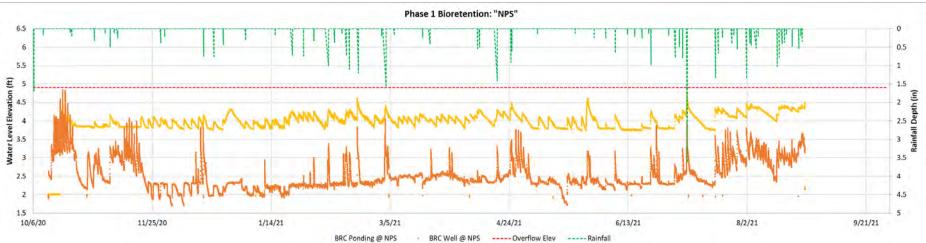


PHASE 1 – TIDAL INFLUENCE – OVERLAY USGS GAUGE DATA



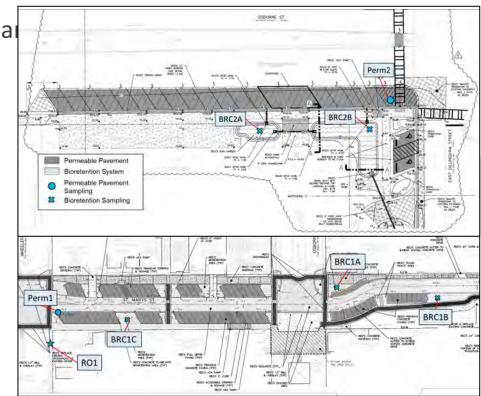
PHASE 1 MONITORING WELLS: SURFACE & SUBSURFACE

- Bypass Elevation Exceeded 9 times
 –3 were due to tidal event only
- Ponding zone drains in ~8-18 hours



PHASE 1 MONITORING WELLS: SURFACE & SUBSURFACE

- Overflow Elevation has not been reached
- Ponding zone drains in ~2-5+ days
- Subsurface water stays present longer during wetter (and king tide) periods

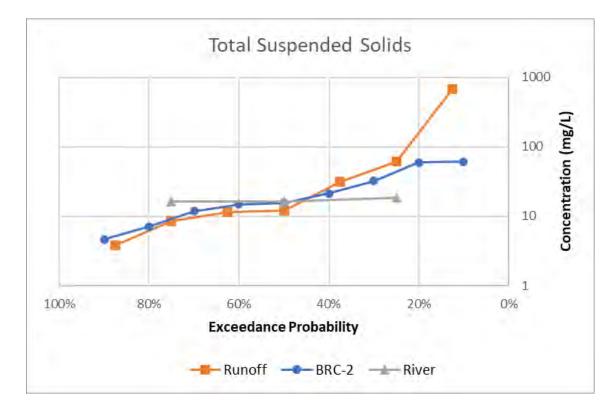

GM()

Research Program & Monitoring Results: Water Quality

WATER QUALITY MONITORING

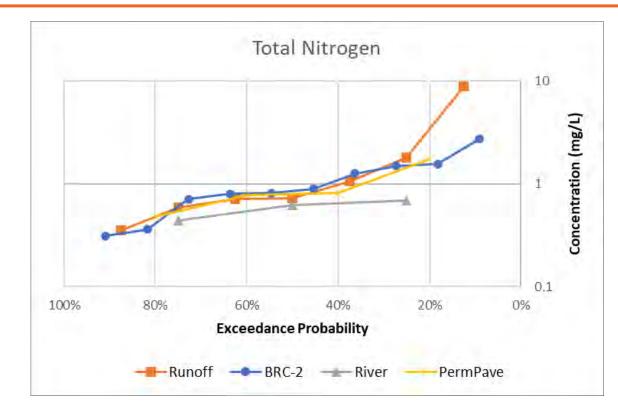
- Dissolved Oxygen at USGS Site on St. Mai River (~12 miles upstream)
 - -12 months, continuous (15-mins)
- Dissolved Oxygen at City Dock
 Monthly
- Storm Samples
 - -Representative Runoff
 - -Phase 1
 - Underdrain from Permeable Pavement & Bioretention
 - Bioretention Well
 - –Phase 2
 - Wells from Permeable Pavement & Bioretention

WATER QUALITY: DISSOLVED OXYGEN IN ST. MARYS RIVER (mg/L)

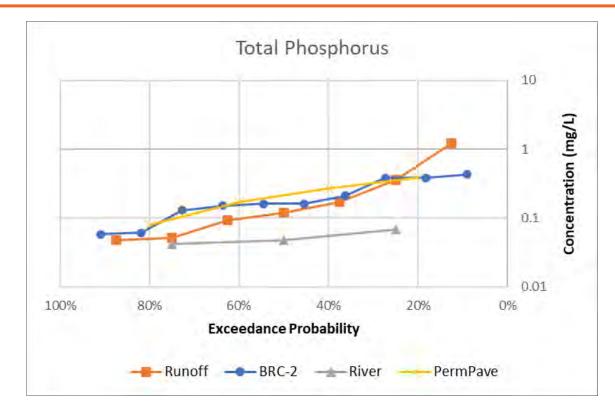


Month	2015-2017 (Pre-BMPs)	2020-2021 (Post-BMPs)	Difference
January	7.80	8.82	1.01
February	8.16	7.85	-0.31
March	6.92	6.78	-0.13
April	5.87	6.51	0.64
May	5.37	5.72	0.35
June	4.64	5.07	0.43
July	4.32	3.39	-0.93
August	4.16	3.46	-0.70
September	3.91	3.63	-0.28
October	4.88	4.79	-0.09
November	6.16	6.35	0.19
December	7.07	8.08	1.00

Monthly Average DO (mg/L) at: <u>USGS 02231254</u> St. Marys River at I-95, near Kingsland, GA


WATER QUALITY – STORMWATER - TSS

- Grab Samples
 - -Runoff Avg: 114.2 mg/L
 - -Bioretention Avg: 25.2
 - –Phase 1 Underdrain: 9.0•N=1
 - -River Avg: 16.9
- At Median:
 - –River > Bioretention > Runoff > PermPave
- Several storm events were sampled toward end of event (first flush)


WATER QUALITY – STORMWATER - NITROGEN

- Grab Samples
 - -Runoff Avg: 1.99 mg/L
 - -Bioretention Avg: 1.09
 - -Perm Pave Avg: 0.95
 - -River Avg: 0.59
- At Median:
 - –Bioretention > PermPave > Runoff > River
- Reduces Ammonia & Organic-N
- Increases NOx

WATER QUALITY – STORMWATER - PHOSPHORUS

- Grab Samples
 - -Runoff Avg: 0.29 mg/L
 - -Bioretention Avg: 0.21
 - –Perm Pave Avg: 0.22–River Avg: 0.05
- At Median:
 - –PermPave > Bioretention > Runoff > River
- Slight reduction to no net change in orthophosphate
- Reduced particulate phosphorus

GM()

Next Steps & Conclusions

- Calibrate hydrologic model with infiltration/exfiltration rates to predict expected capture volumes
 - -Compare with literature for piedmont/coastal sites
 - -Assess if capture decreases over time due to surface clogging
- Review timing of rainfall/runoff events to see frequency compared with tidal cycle

Future Work:

• When tide control is put on outfalls to the river (and not just underdrain), pursue funding to resume monitoring

- Coastal environments with sandy soils and deeper water tables are ideal for infiltration.
 - -No underdrain & spec-ed a shallower profile (media depth: 12 to 18 inches)
 - -Permeable pavement easier to construct with a low profile
- Be cautious with higher-water tables & tidally-influenced systems —Reduced functionality – tide-control is preferred
- Water Quality results were too limited to draw major conclusions: —Grab samples only (flow-weighted composite are preferred but more \$\$\$)
 - -Dry monitoring period (few samples & few with flow from underdrain)
 - Infiltration was too fast for some sites
 - Tropical Storm Elsa 3.64" infiltrated mostly within 12 hours
 - -Many runoff samples were relatively clean (low TSS/TN/TP concentrations)

"The preparation of this report, map, document, project, etc., was financed in part through a grant from the U.S. Environmental Protection Agency under the Provisions of Section 319(h) of the Federal Water Pollution Control Act, as amended."

Q&A <u>Contact Info</u>: Rob Brown, Ph.D., P.E. Email: <u>Rob.Brown@gmcnetwork.com</u> Phone: 912-226-4612