

Reimagining Our Stormwater Drains: Cost Effective Restoration with Multiple Benefits

Phillippi Creek Canals Sarasota County, Florida Stormwater Environmental Utility (SEU)

John Kiefer, PhD, PE, PWS john.kiefer@woodplc.com

woodplc.com

© 2017 Amec Foster Wheeler. All Rights Reserved.

. . .

Simpson, G. G. Black & white photonegative, 4 × 5 in. State Archives of Florida, Florida Memory. <https://www.floridamemory.com/items/show/125094>

• • •

Shallow Plane Failures

riably Stable Toe

	Stable	Unstable	Total
 Mowed	1	10	11
Woody	13	1	14
Total	14	11	25

Uniform water depth over soft sand bed

Leading edge of sediment plume moving downstream

• • •

• • •

. . .

• • •

i. Photo credit: http://gabion1.co.uk/river-bank-protection/

VRSS

Drainage Ditch Conversion to Multi-Stage Channel

Year 0. Edwards Bottomlands, Starke FL. (Drainage Area = 25 sq. mi.)

Year 3. Doe Branch 5, Hardee Co. FL. (Drainage Area = <1 sq. mi.)

Year 12. Maron Run, Polk Co. FL. (Drainage Area = 3 sq. mi.)

Three-Stage Channel – Edwards Bottomlands

Water Quality Benefits -Chesapeake Bay TMDL Stream Restoration Protocols

- P1: Bank stabilization
- P2: Hyporheic exchange during baseflow
- P3: Floodplain reconnection
- P4: Dry RSC Provides add-on reductions downstream of untreated impervious surface

From Minshall et al (1983) Ecological Society of America

Phillip Canal Restoration – Estimated Nitrogen Reduction

TN Removed (lb TN/yr/mile)											
Stream Category	P1 - Erosion	P2 - Hyporheic	P3 - Floodplain	Total							
Headwater (<2 SM)	51	539	62	652							
Mid-Order (2-20 SM)	51	742	79	872							
Lowland (>20 SM)	51	1011	103	1165							

Convert Headwater Canal to Natural Channel System, 1 mile

Total NPV = \$8,360,000

Convert Mid-Order Canal to Natural Channel System, 1 mile

Convert Lowland Canal to Natural Channel System, 1 mile

Total NPV = \$8,150,000 Increase Decrease Total \$10,000,000 \$50,000 \$4,173,000 \$8,000,000 \$6,000,000 \$1,034,000 \$4,000,000 \$1,152,400 \$6,244,400 \$2,000,000 S-\$(2,000,000) \$(4,000,000) \$708,000 //////// \$(5,211,800) \$(6,000,000) Avoided O&M Stream Habitat Wetland Habitat

Retrofit Cost Water Quality Property Value Flood Avoidance

Capital Investment

Data (In Casada	Destruction	Mean Capital		Capital Range			
Retrofit Scenario	HW			Worst Case		Best Case	
Turf over VRSS		\$	(724,800)	\$	(942,240)	\$	(507,360)
Forest over VRSS	HW	\$	(731,900)	\$	(951,470)	\$	(512,330)
Stream Restoration	HW	\$	(1,069,300)	\$	(1,390,090)	\$	(748,510)
VRSS - Whole Bank	HW	\$	(1,194,300)	\$	(1,552,590)	\$	(836,010)
Riprap	HW	\$	(1,256,700)	\$	(1,633,710)	\$	(879,690)
Articulated Block	HW	\$	(1,432,900)	\$	(1,862,770)	\$	(1,003,030)
Gabion	HW	\$	(2,371,300)	\$	(3,082,690)	\$	(1,659,910)
Turf over VRSS	MO	\$	(1,539,300)	\$	(2,001,090)	\$	(1,077,510)
Forest over VRSS	MO	\$	(1,548,000)	\$	(2,012,400)	\$	(1,083,600)
VRSS - Whole Bank	MO	\$	(2,509,400)	\$	(3, 262, 220)	\$	(1,756,580)
Stream Restoration	MO	\$	(3,688,700)	\$	(4,795,310)	\$	(2,582,090)
Riprap	MO	\$	(4,063,000)	\$	(5,281,900)	\$	(2,844,100)
Gabion	MO	\$	(4,063,200)	\$	(5,282,160)	\$	(2,844,240)
Articulated Block	MO	\$	(4,591,700)	\$	(5,969,210)	\$	(3,214,190)
Turf over VRSS	LL	\$	(1,576,100)	\$	(2,048,930)	\$	(1,103,270)
Forest over VRSS	LL	\$	(2,179,200)	\$	(2,832,960)	\$	(1,525,440)
VRSS - Whole Bank	LL	\$	(2,428,000)	\$	(3, 156, 400)	\$	(1,699,600)
Gabion	LL	\$	(3,914,500)	\$	(5,088,850)	\$	(2,740,150)
Riprap	LL	\$	(4,591,700)	\$	(5,969,210)	\$	(3,214,190)
Stream Restoration	LL	\$	(5,211,800)	\$	(6,775,340)	\$	(3,648,260)
Articulated Block	LL	\$	(6,448,700)	\$	(8,383,310)	\$	(4,514,090)

Triple Bottom Line

Detrofit Cooncris	Desisten	on Mean NPV		NPV Range			
Retrofit Scenario	Position				Worst Case		Best Case
Stream Restoration	HW	\$	8,363,400	\$	3,146,160	\$	11,749,000
Stream Restoration	LL	\$	8,150,000	\$	(636,440)	\$	13,957,080
Stream Restoration	MO	\$	7,312,300	\$	421,690	\$	11,954,210
Forest over VRSS	HW	\$	408,100	\$	(381,470)	\$	969,670
Turf over VRSS	LL	\$	249,000	\$	(1,482,780)	\$	1,269,360
Turf over VRSS	HW	\$	61,200	\$	(549,240)	\$	514,440
Forest over VRSS	MO	\$	100	\$	(1,411,550)	\$	928,930
Forest over VRSS	LL	\$	(100)	\$	(2,089,810)	\$	1,307,390
VRSS - Whole Bank	HW	\$	(54,300)	\$	(982,590)	\$	945,990
VRSS - Whole Bank	LL	\$	(248,900)	\$	(2,413,250)	\$	1,433,230
Turf over VRSS	MO	\$	(345,200)	\$	(1,577,240)	\$	474,820
Riprap	HW	\$	(357,300)	\$	(1,184,010)	\$	289,530
Articulated Block	HW	\$	(533,500)	\$	(1,413,070)	\$	166,190
VRSS - Whole Bank	MO	\$	(961,300)	\$	(2,661,370)	\$	555,950
Gabion	HW	\$	(1,471,900)	\$	(2,632,990)	\$	(490,690)
Gabion	LL	\$	(3,015,100)	\$	(4,639,150)	\$	(1,570,930)
Riprap	MO	\$	(3,163,600)	\$	(4,832,200)	\$	(1,674,880)
Gabion	MO	\$	(3,163,800)	\$	(4,832,460)	\$	(1,675,020)
Riprap	LL	\$	(3,692,300)	\$	(5,519,510)	\$	(2,044,970)
Articulated Block	MO	\$	(3,692,300)	\$	(5,519,510)	\$	(2,044,970)
Articulated Block	LL	\$	(5,549,300)	\$	(7,933,610)	\$	(3,344,870)

• HILLING CREEK Protect our Creek!

wood.

Florida Canal Improvements

John Kiefer, PhD, PE, PWS 863-944-6987 john.kiefer@woodplc.com

woodplc.com