

SESWA 2018

Getting Our Feet Wet at Every Stage: Optimizing the Restoration of Urban Streams

Presentation Outline

Planning/Design – challenges, approaches, optimization

Public Outreach/Stakeholder Involvement – tips to get it right

- Permitting considerations
- Construction how to avoid the pitfalls

Optimizing the Restoration of Urban Streams Planning and Design

Identify Stream Problems

Maintenance Issues

Bank Erosion

Water Quality

Inadequate Buffers

Channel

Alterations

Development Impacts on Streams

STREAMFLOW

Results in Unstable Channel

Loss of Property \$\$ Exposes Sanitary Sewers Can Result in SSOs Increase in TSS and Turbidity; Impacts Macroinvertebrates and Entire Stream Ecology

Results in Sediment Deposition

- Channel Blockage
- Continuing Maintenance \$\$
- Upstream Flooding
- Loss of Property \$\$\$\$

Results in Impairments

- TSS Biota
- Fisheries
- Nutrients N and P
- Pathogens

In natural condition, streams attenuate pollutants. Decrease in residence time and loss of habitat reduces natural physical and biological processes.

Know Your Project Challenges/Issues

- Location park, public area, private property
 - Safety
 - > Maintain use of adjacent areas
 - Is tree removal an issue?
- Urban Environment
 - Utilities
 - Culvert alignments
 - Construction vehicle access/impacts
 - Noise impacts

Know Your Project Challenges/Issues

- Constraints
 - ➢upstream or downstream constraints
 - Dams/tailwater issues
 - Historic changes in the watershed

What are your Project Goals?

- Stabilize stream banks to reduce water quality impacts
- Reduce impacts to downstream aquatic resources
- Protect adjacent
 infrastructure
- Provide enhanced recreational opportunities
- Provide an educational opportunity

Set goals that relate to solving a functional problem

Stream Functions Pyramid

Source: Harman, W., R. Starr, M. Carter, K. Tweedy, M. Clemmons, K. Suggs, C. Miller. 2012. A Function-Based Framework for Stream Assessment and Restoration Projects. US EnvironmentalProtection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC EPA 843-K-12-006.

Pre-construction Monitoring

- Visual inspection Establish GPS-based photo benchmarks
- Geomorphic measurements
- Sediment accumulation
- TSS Loading estimation
- Bank Erosion
- Pebble count
- Macroinvertebrate sampling
- Benthic Macroinvertebrate Collection and Assessment
- Water Quality Sampling

Know your Restoration Approach

- Natural Channel Design
 - Stable dimension, pattern and profile
 - Not aggrading or degrading
 - Bankfull channel

Know your Restoration Approach

- Valley Restoration
 - Small channel
 - Minimal sediment transport
 - Encourage groundwater/surface water interaction
 - Pre-disturbed conditions

Know your Restoration Approach

- Re-generative Design
 - Often considered a BMP
 - Step Pool Stormwater Conveyance (SPSC)
 - Ephemeral Channels Regenerative Stormwater Conveyance (RSC)
- Others
 - Large Woody Debris
 - Dam Removal

Modeling to Evaluate Current and Future Conditions

- Use DEM to determine:
 - Flow direction
 - Drainage area
- Streams Segments
- Stream walk data
 - Bank cover
 - Bank height
 - Segment length
- Land Cover
- TSS Yield

Modeling to Evaluate Current and Future Conditions

- Hydrology and Hydraulics
 - Flows
 - Velocities
 - Sheer Stress
- Sediment Supply and Transport
 - Suspended sediment
 - Bedload

Optimizing the Restoration of Urban Streams **Public Outreach/Stakeholder Involvement**

Lessons Learned

- Stakeholder Engagement is Important
 - Include all Stakeholders Schools, neighborhood associations, public, other groups
 - Early Conceptual Design (or even before in some cases)
 - Frequently Monthly/quarterly
 - Information at the level of your audience

Public Communications

- Public Meeting prior to construction
 - ≻Overview
 - Existing Conditions
 - Project Improvements
 - ≻What to Expect
 - Schedule

Public Communications

- Project Signs
 - ➢Visible Location
 - Project Aspects
 - ➢ Benefits
 - > Pictures

Optimizing the Restoration of Urban Streams Permitting

Permits May be Required From:

- U.S. Army Corps of Engineers (ACOE) Nationwide 3, 27, others
- U.S. Fish and Wildlife Service
- State
 - > Water Quality
 - Historic Preservation Division
 - Erosion Control
 - > Other
- Local governments (Cities, Counties)

Keys to a Successful Submittal

- Know what permits are needed
 - State and Local
 - Federal
- Communication
 - Verbally
 - Often
 - Client-Consultant-Reviewer

Keys to a Successful Submittal (cont.)

- Relationships
 - State and Local Agencies
 - > USACE

- Know your reviewers and their limitations
 - Know and understand the regulations
 - Understand what things they may or may not have any leeway on

Keys to a Successful Submittal (cont.)

- Unique issues about your site/project
 - Location
 - Social Issues
 - Environmental Issues
 - Site Conditions

- Develop project alternatives (if needed) early
 - Feature locations
 - Size
 - Avoid, Minimize, Mitigate

Optimizing the Restoration of Urban Streams **Construction**

Construction

Construction

Construction

