Next Generation Planning: from Modeling to Web-based Tracking

Dustin Bambic, PH Paradigm Environmental Nashville, TN

Overview

- Wading through Clean Water Act requirements
- Policy decisions informed through processbased modeling
- Implementation tracking and adaptive management
- Grand, overarching conclusions

Clean Water Act (fishable and swimmable)

So, where does this lead us?

Runoff is a primary source of pollutants

- + Not possible to instantly achieve water quality standards everywhere
- + Large array of options for where and how to control pollutants in runoff

Need: Tools to Analyze Costs and Benefits of an Array Stormwater Management Scenarios

+ Public needs clear path forward with costs and timeline

Watershed Management Programs (Los Angeles County)

Watershed Management Programs

Recent Watershed Management Programs

- Upper Los Angeles River
- Upper San Gabriel River
- Upper Santa Clara River
- Malibu Creek
- Ballona Creek
- Dominguez Channel

Plus: Snohomish County, Wash.

Next-Generation Programs

Next-Generation Stormwater Management Program

Watershed Management Modeling System

Baseline Hydrologic and Pollutant Modeling

Malibu Creek Watershed Management Program

Stormwater Management Modeling and Optimization

- (1) Source Control e.g., Enhanced sweeping
- (3) Parcel-scale Retention and Use

(2)Retention inRight of Way

With: Opportunities and Cost Functions

Example Modeling System Output

- Time series of flow and pollutants for each catchment
- Post-BMP water quality for each catchment
- Hydrograph attenuation and water quality downstream in rivers

SCALE!

₩.

1/1/2006 4/1/2006 7/1/2006 10/1/2006 1/1/2007 1/1/2007 1/1/2007 1/1/2008 4/1/2008 1/1/2008 1/1/2008 1/1/2008 1/1/2008

4/1/2010 - 7/1/2010 -10/1/2010 -

1/1/2010

4/1/2009 7/1/2009 10/1/2009 1/1/2011 4/1/2011 7/1/2011

Streamflow Attenuation by Structural BMPs

Zinc Attenuation by Structural **BMPs** and Source Control

(time series is critical!)

Total Zinc (ug/L)

400

300

200

100

0

10/1/2002 1/1/2003 4/1/2003 7/1/2003

10/1/2003

1/1/2004 4/1/2004 7/1/2004 10/1/2004

1/1/2005 4/1/2005 7/1/2005 10/1/2005

Implementation Strategy for each Major Waterbody

Upper Santa Clara River EWMP

Detailed Strategy for each Subwatershed

And costs!

Upper San Gabriel River EWMP

	TAF B PERFO	LIANCE GET: MP RMANCE DAL					S	EWMP DACH TO A UBJECT T MP capacit	ACHIEVE	TIVE MAN	NCE TAR		3	
	For Metals by 2026	For Bacteria by 2040					For Me	etals Attain	ment by 2	026				
0		5 70	5	Low-	Impact	Developr	ment	Streets	1	Regiona	al BMPs	_	ofty	Ì
Subwatershed ID	24-hour Volume Managed (acre-ft)	Additional 24-hour Volume Managed (acre-ft)	% Load Reduction Critical Condition	Ordinance	Planned LID	Public LID	Residential LID	Green Streets	Tier 1 (public, owned)	Tier 2 (public, owned)	Tier 2 (public, non-owned)	Private	Total BMP Capacity (acre-ft)	
515783	0.85	3.37	14%	0.267		0.006	0.418	ŧ	+	0.00	0.06		0.75	
515883	6.10	1.17	48%	0.216		0.464	0.088	1.02		0.27	-		2.06	
515983	10.38	0.47	82%	0.110		0.523	0.339		5.67		-		6.65	
516083	4.89	1.13	48%	0.203		0.531	0.387	2.52			1.25		4.89	
516983	0.25	1.06	13%	0.065			0.148				-		0.21	
517083	44		+			-		-	-	14	- 144		0.00	
517183	21.70	0.23	87%	0.240		2.852	0.525	2.31	10.77	1.448	2.23		18.93	
517283	0.01	0.08	12%	0.003			0.010	1.		1.44		-	0.01	
517383	63.82	0.56	91%	0.605		2.966	1.922	4.06	42.62	-	3.78		55.95	
517483	10.58	0.91	68%	0.066		0.085	0.186				0.23	- 14	0.56	
517583	28.51	1.11	72%	0.414		2.797	1.465	0.00	6.27	16.86	4.57	2-1-2	32.37	
517983	6.26	0.06	92%	0.027		2.464	0.088				0.03		2.61	
518083		0.00	10%									-	0.00	

0.494

0.271

2.84

0.01

0.12

-

0.01

For Bacteria Attainment by 2040

Regional BMPs

private)

3.37

1.17

1.13

1.06

0.23

0.08

0.56

0.91

1.11

0.06

0.00

0.41

0.18

0.01

3.67

0.13

BMP r both Bacteria

fetals acre-ft

mulative I pacity for tals and E

4.12

7.11

6.03

1.27

19.17

0.09

56.51

1.48

33.48

2.67

0.00

20.10

3.85

0.15

65%

16%

0.067

0.004

0.18

0.01

5.03

0.01

518583

518683

USGR EWMP Jurisdiction

Sce	nario
Eval	uation:

Cost and benefits for Watershed Management Programs

	Water Quality Criteria Attained	Approach	Attainment Condition	Attainment Location	Source Control Approach
	Acute	Emphasize green infrastructure	Median year	Only at major river outlets	Current level
	Chronic	Emphasize capture by basins on public lands	Wet year	At outlets of rivers and tributaries	Reduce fertilizers
	Primary Contact	Minimize cost	85 th percentile 24-hour storm	At each 1 mile segment	Increase sweeping
t	Secondary Contact	Maximize benefit	1 inch rainfall event		

And Timeline!

Capital Improvement Program

City of Los Angeles Stormwater and Green Infrastructure 5-Year Capital Improvement Plan - Project Summary

No.	Project Name	Watershed	Cost Sharing Opportunity	Total Projec	t Cost		FY 15/16	F	Y 16/17	FY 17,	/18	FY 18/19		FY 20/21
LRS-1	LA River Segment B Urban Runoff Project No. 1	LAR	No	\$	7,809,000	s	798,000	s	2,086,770 \$	5 4	,924,230 \$		\$	- u
LRS-2	LA River Segment B Urban Runoff Project No. 2	LAR	No	5	7,398,000	\$	756,000	\$	1,976,940	\$ 4	,665,060 \$		S	-
LRS-3	LA River Segment B Urban Runoff Project No. 3	LAR	No	5	5,343,000	S	546,000 \$	s	1,427,790 \$	\$ 3	,369,210 \$	-	S	-
LRS-4	Arroyo Seco Urban Runoff Project No. 1	LAR	Na	\$	280,850	\$	28,700	\$	75,051 \$	5	177,100 S	-	\$	19
LRS-5	Arroyo Seco Urban Runoff Project No. 2	LAR	No	\$	2,457,506	s	251,132							
LRS-6	Arroyo Seco Urban Runoff Project No. 3	LAR	No	\$	1,737,112	S	177,515							
LRS-7	Arroyo Seco Urban Runoff Project No. 4	LAR	No	5	4,795,000	\$	490,000							
LRS-8	Arroyo Seco Urban Runoff Project No. 5	LAR	No	5	342,500	S	35,000							
LRS-9	4th St & Santa Fe Priority Greenway + Sustainable Little Tokyo	LAR	No	5	17,125,000	\$	1,750,000							
TSO-1	NOTF/LFTF-1 Phase I	BC	Na	5	16,968,820	\$	1,734,040							
TSO-2	Sepulveda Channel Diversion BMP Project	BC	No	5	6.067.730	s	620,060							
BC-1	Lafayette Park	BC	No	5	27,256,150	\$	1,997,458							
BC-2	Queen Anne Recreation Center	BC	No	\$	37,059,870	5	2,715,920		City of I	as An	rolas St	ormwater	bae	
BC-3	Rancho Park Golf Course	BC	No	\$	18,119,620	\$	1,327,890							
BC-4	Poinsettia Park	BC	No	\$	15,094,660	s	1,106,207		Green In	frastru	icture 5-	-Year Cap	ital	
BC-5	Westwood Neighborhood Greenway Project	BC	No	\$	3,104,420	\$	317,240		Transverse		lan			
BC-6	Del Rey Lagoon Water Quality Improvement Project	BC	No	\$	1,441,832	\$	147,340		Improve	ment P	lan			
BC-7	Vermont Square Park Stormwater Treatment and Infiltration Project	BC	No	5	2,113,088	s	215,936							
BC-8	National Boulevard Runoff Treatment Project	BC	No	5	14,111,000	Ś	1,034,120							
BC-9	Westlake EWMP Regional Project 1	BC	No	\$	4,914,204	\$	502,181							
BC-10	Palms EWMP Regional Project 1	BC	No	\$	12,026,075	\$	1,228,942							
BC-11	South Los Angeles EWMP Regional Project 1	BC	No	\$	3,229,412	\$	330,013		GUNIN	onment				
BC-12	Wilshire EWMP Regional Project 1	BC	No	\$	2,722,501	\$	278,212		LASAN	IATION				
BC-13	West Adams EWMP Regional Project 1	BC	No	\$	7,730,833	\$	790,012							
BC-14	West Los Angeles EWMP Regional Project 1	BC	No	\$	6,150,441	\$	628,512		CITY OF LOS ANGE WATERSHED PROT					
BC-15	Wilshire EWMP Regional Project 2	BC	No	\$	2,628,495	\$	268,605							
BC-16	South Los Angeles EWMP Regional Project 2	BC	No	\$	4,184,084	\$	427,571							
BC-17	West Adams EWMP Regional Project 2	BC	No	\$	2,053,915	\$	209,889							

JUNE 30, 2015

Implementation Tracking

Grand, Overarching Conclusions

Conclusions

- It is time for municipalities to understand the implications and opportunities driven by Clean Water Act requirements
- Process-based models are valuable tool for analyzing the cost and benefit of policy decisions
- Programs not plans! Tracking and adaptive management are critical.

I APPRECIATE YOU

Dustin Bambic

Director Paradigm Environmental dustinb@paradigmh2o.com www.paradigmh2o.com

BACKUP

	COMPL										
	TARG MEASU AN ENFORG	RABLE		S	ACH TO	O ACHII	EMENT/ EVE CO DAPTIVE ressed i	MPLIAN E MANA	ICE TAF	IT [´]	
	~	÷Ħ,	Low-	Impact	Develop	ment	Streets	Reg	ional BN	ЛРs	ity
Subwatershed ID	% Load Reduction Critical Condition	24-hour Volume to be Managed (acre-ft)	Ordinance	Planned LID	Public LID	Residential LID	Green Streets, All Components	Regional BMPs (Very High)	Regional BMPs (High)	Private Regional BMPs	Total BMP Capacity (acre-ft)
640249	9%	1.66	1.03		1.36	1.80	0.00	0.00	0.00	0.00	4.2
640349	19%	0.94	0.18		0.90	0.01	0.36	0.00	0.00	0.00	1.4
640449	14%	0.15	0.15		0.38	0.03	0.00	0.00	0.00	0.00	0.6
640549	67%	26.30	1.14	0.04	0.14	3.14	9.63	13.75	0.00	0.00	27.8
640649	84%	13.22	0.31		0.54	0.33	3.98	0.00	0.00	6.44	11.6
640749	38%	2.70	0.50	0.00	2.07	0.48	2.98	0.00	0.00	0.00	6.0
640849	16%	1.94	0.48		0.81	1.22	0.35	0.00	1.00	0.00	3.9
640949	27%	0.80	0.08		0.36	0.02	0.22	0.00	0.00	0.00	0.7
641049	39%	1.81	0.12		0.07	0.20	0.06	0.00	0.00	0.00	0.5
641149	7%	0.09	0.05		0.18	0.09	0.35	0.00	0.00	0.00	0.7
641449	8%	0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.0
641549	26%	0.52	0.09		0.41	0.30	0.05	0.20	0.00	0.00	1.0
641649	12%	0.00	0.00			0.01	0.00	0.00	0.00	0.00	0.0
642049	6%	0.00	0.00				0.00	0.00	0.00	0.00	0.0
Total	39%	50.1	4.1	0.0	7.2	7.6	18.0	14.0	1.0	6.4	58.4

RED = Subwatersheds with highest required % load reductions

BLUE = Subwatersheds with highest BMP capacities within a BMP category

Opportunity Screening

Street Retention Opportunity Screening

Infiltration Basin Opportunity Screening

WMP Implementation Strategy

Upper Los Angeles River WMP

 $1 \text{ acre-ft} = 1233 \text{ m}^3$

Scheduling

 $1 \text{ acre-ft} = 1233 \text{ m}^3$

		Formulas For Estimating Total Costs ¹							
BMP Category	BMP Types	Capital Costs	Annual O&N						
dine i	Bioretention with Underdrain	Cost = 17.688 (A) + 2.165 (Vt) + 2.64 (Vm) + 3.3 (Vu)	Cost = 2.54 (A)						
	Bioretention without Underdrain	Cost = 9.438 (A) + 2.165 (Vt) + 2.64 (Vm)	Cost = 2.54 (A)						
LID and Green	Residential LID	Cost = 4.000 (A)							
Streets	Permeable Pavement with Underdrain	Cost = 33.594 (A) + 3.3 (Vu)	Cost = 1.74 (A)						
	Permeable Pavement without Underdrain	Cost = 25.344 (A)	Cost = 1.74 (A)						
	Pump	Cost = 56,227*(Pump Capacity _{cfs}) + \$1,207,736 ²							
Regional BMPs	Regional Project on Public Parcel	Cost = 10.01 (A) + 2.296 (Vt) + 2.8 (Vm)	Cost = 1.918 (A)						
	Regional Project on Private Parcel	Cost = 139.01 (A) + 2.296 (Vt) + 2.8 (Vm)	Cost = 1.918 (A)						

Unit Cost Functions

Catchment-scale Optimization

Amazon Web Services

